Skip to main content
Log in

Properties of composites of metal hydride alloys synthesized by mechanical milling

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hydride-forming alloys are used as negative electrode components of nickel metal hydride (MH) batteries. Generally, commercially used compounds are made of two types of alloys, rare earth based on LaNi5, known as AB5 type, and alloys based on ZrCr2, ZrV2, ZrMn2, and TiMn2, known as AB2 type (Laves phases). A and B are generally composed of more than one element. In both systems, the A components are metals that form stable hydrides, while the B components are transition metals and form less stable hydrides. In the present work, electrodes were prepared using composite material obtained by mechanical milling of different proportions of ZrTiV0.8Ni2Cr0.52Mn0.56Co0.08Al0.04 (AB2) and LaNi3.6Co0.7Mn0.4Al0.3 (AB5) alloys. The particles of the AB5 alloy were dispersed on the surface of the AB2 particles, as shown by scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The discharge capacity of the electrodes improved with the addition of 80 and 50 weight-% AB2. The maximum discharge capacities obtained, after 30 cycles, for electrodes with 50 and 80 % AB2 were above 200 mA h g−1, while for the original AB2 alloy it was less than 170 mA h g−1. A decrease in the composite concentration of the AB2 alloy improves the exchange current density, as can be seen from electrochemical impedance spectroscopy (EIS) measurements. High-rate dischargeability (HRD) and EIS results showed enhanced hydrogen diffusion for the samples with an AB2 concentration of 50 and 80 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ogden JM (1999) Developing an infrastructure for hydrogen vehicles: a Southern California case study. Int J Hydrog Energy 24:709–730

    Article  CAS  Google Scholar 

  2. Sakintuna B, Lamaridarkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrog Energy 32:1121–1140

    Article  CAS  Google Scholar 

  3. Hirscher M (2010) Handbook of hydrogen storage: new materials for future energy storage. doi: 10.1002/9783527629800

  4. Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys Compd 293-295:877–888

    Article  CAS  Google Scholar 

  5. Ivey DG, Northwood DO (1983) Storing energy in metal hydrides: a review of the physical metallurgy. J Mater Sci 18:321–347

    Article  CAS  Google Scholar 

  6. Shaltiel D (1978) Hidride properties of AB2 laves phase compounds. J Less-Common Met 62:407–416

    Article  CAS  Google Scholar 

  7. Züttel A (2003) Materials for hydrogen storage. Mater Today 6:24–33

  8. Lasia A (2002) Applications of the electrochemical impedance spectroscopy to hydrogen adsorption, evolution and absorption into metals. In: Conway BE, White RE (eds) Modern aspects of electrochemistry. Springer USA, Berlin Heidelberg New York, pp. 1–49

    Chapter  Google Scholar 

  9. Prasad Yadav T, Manohar Yadav R, Pratap Singh D (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2:22–48

    Article  Google Scholar 

  10. Koch CC, Whittenberge JD (1996) Mechanical milling/alloying of intermetallics. Intermetallics 4:339–355

    Article  CAS  Google Scholar 

  11. Benjamin JS, Volin TE (1974) The mechanism of mechanical alloying. Metall Trans 5:1929–1934

    Article  CAS  Google Scholar 

  12. Wright IG, Wilcox BA (1974) Observations on strengthening and oxidation behavior of a dispersion hardened Fe–Cr–Base alloy prepared by mechanical alloying. Metall Trans 5:957–960

    Article  CAS  Google Scholar 

  13. Benjamin JS (1900) Mechanical alloying—a perspective. Met Powder Rep 45:122–127

    Article  Google Scholar 

  14. Zaluski L, Zaluska A, Olsen JOS (1995) Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloys Compd 217:245–249

    Article  CAS  Google Scholar 

  15. Yu XB, Walker GS, Grant DM, et al. (2005) Electrochemical hydrogen storage of Ti–V-based body-centered-cubic phase alloy surface-modified with AB5 nanoparticles. Appl Phys Lett 87:133121

    Article  Google Scholar 

  16. Yu XB, Dou T, Wu Z, et al. (2006) Electrochemical hydrogen storage in Ti–V-based alloys surface-modified with carbon nanoparticles. Nanotechnol 17:268–271

    Article  CAS  Google Scholar 

  17. Nagai H, Tomizawa H, Ogasawara T, Shoji K-I (1990) Hydriding characteristics of Mg-xwt.%LaNi5 sintered alloys. J Less-Common Met 157:15–24

    Article  CAS  Google Scholar 

  18. Jain A, Agarwal S, Vyas D, et al. (2010) Correlation between the milling time and hydrogen storage properties of ZrCrFe ternary alloy. Int J Hydrog Energy 35:9910–9915

    Article  CAS  Google Scholar 

  19. Han S-M, Zhao M-S, Zhang Z, et al. (2005) Effect of AB2 alloy addition on the phase structures and electrochemical characteristics of LaNi5 hydride electrode. J Alloys Compd 392:268–273

    Article  CAS  Google Scholar 

  20. Han S, Zhang Z, Zhao M, Zheng Y (2006) Electrochemical characteristics and microstructure of Zr0.9Ti0.1Ni1.1Mn0.6V0.3Zr0.9Ti0.1Ni1.1Mn0.6V0.3–LaNi5LaNi5 composite hydrogen storage alloys. Int J Hydrog Energy 31:563–567

    Article  CAS  Google Scholar 

  21. Lundqvist A, Lindbergh G (1999) Kinetic study of a porous metal hydride electrode. Electrochim Acta 44:2523–2542

    Article  CAS  Google Scholar 

  22. Meyers JP, Doyle M, Darling RM, Newman J (2000) The impedance response of a porous electrode composed of intercalation particles. J Electrochem Soc 147:2930–2940

    Article  CAS  Google Scholar 

  23. Paxton B, Newman J (1997) Modeling of nickel/metal hydride batteries. J Electrochem Soc 144:3818–3831

    Article  CAS  Google Scholar 

  24. Micka K, Rousar I (1979) Theory of porous electrodes-xvi. The nickel hydroxide electrode. Electrochim Acta 25:1085–1090

    Article  Google Scholar 

  25. Visintin A, Castro E, Real S, et al. (2006) Electrochemical activation and electrocatalytic enhancement of a hydride-forming metal alloy modified with palladium, platinum and nickel. Electrochim Acta 51:3658–3667

    Article  CAS  Google Scholar 

  26. Castro E, Real S, Bonesi A, et al. (2004) Electrochemical impedance characterization of porous metal hydride electrodes. Electrochim Acta 49:3879–3890

    Article  CAS  Google Scholar 

  27. Humana RM, Thomas JE, Ruiz F, et al. (2012) Electrochemical behavior of metal hydride electrode with different particle size. Int J Hydrog Energy 37:14966–14971

    Article  CAS  Google Scholar 

  28. Zaluski L, Zaluska A (1997) Nanocrystalline metal hydrides. J Alloys Compd 254:70–79

    Article  Google Scholar 

  29. Singh A, Singh BK, Davidson DJ, Srivastava ON (2004) Studies on improvement of hydrogen storage capacity of AB5 type:MmNi4.6Fe0.4 alloy. Int J Hydrog Energy 29:1151–1156

    CAS  Google Scholar 

  30. Cerón-Hurtado NM, Esquivel MR (2010) Stages of mechanical alloying during the synthesis of Sn-containing AB5-based intermetallics. Int J Hydrog Energy 35:6057–6062

    Article  Google Scholar 

  31. Korea S (1997) The hydrogenation characteristics of Ti-Zr-V-Mn-Ni C14 type Laves phase alloys for metal hydride electrodes. J Alloys Compd 254:601–604

    Google Scholar 

  32. Castro BE, Milocco RH (2005) Identifiability of sorption and diffusion processes using EIS: application to the hydrogen reaction. J Electroanal Chem 579:113–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Agencia Nacional Promoción Científica y Tecnológica of Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Catamarca and Universidad Nacional de La Plata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Visintin.

Additional information

E. B. Castro passed away in 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humana, R.M., Ruiz, F.C., Thomas, J.E. et al. Properties of composites of metal hydride alloys synthesized by mechanical milling. J Solid State Electrochem 21, 153–160 (2017). https://doi.org/10.1007/s10008-016-3347-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3347-8

Keywords

Navigation