Skip to main content
Log in

Cyano or o-nitrophenyl? Which is the optimal electron-withdrawing group for the acrylic acid acceptor of D-π-A sensitizers in DSSCs? A density functional evaluation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We report a DFT, TDDFT and DFTB investigation of the performance of two donor-π-acceptor (D-π-A)-type organic dyes bearing different electron-withdrawing groups (EWG) for dye-sensitized solar cells (DSSCs) to evaluate which EWG is better for an acrylic acid acceptor, i.e., Cyano (–CN) or o-nitrophenyl (o-NO2–Ph). A series of theoretical criteria applied successfully in our previous work to explain the different performance of organic dyes related to open-circuit photovoltage (V oc) and short-circuit current density (J sc) were used to evaluate the performance of the dyes with just different EWG. Our calculated results reveal that dye 2 with o-NO2–Ph has a larger vertical dipole moment, more electrons transferred from the dye to the semiconductor and a lower degree of charge recombination, which could lead to larger V oc; while the larger driving force and comparable light harvesting efficiency could lead to higher J sc , highlighting the potential of o-NO2–Ph as an EWG in an acrylic acid acceptor.

CN or o-NO2-Ph? Which is better for acrylic acid acceptor of donor-π-acceptor (D-π-A) dyes used in dye-sensitized solar cells (DSSCs) has been evaluated by DFT/TDDFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Grätzel M (2001) Nature 414:338–344

    Article  Google Scholar 

  3. Grätzel M (2003) J Photochem Photobiol C Photochem Rev 4:145–153

    Article  Google Scholar 

  4. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) J Am Chem Soc 126:12218–12219

    Article  CAS  Google Scholar 

  5. Mishra A, Fischer MKR, Bäuerle P (2009) Angew Chem Int Ed 48:2474–2499

    Article  CAS  Google Scholar 

  6. Preat J, Jacquemin D, Perpete EA (2010) Energy Environ Sci 3:891–904

    Article  CAS  Google Scholar 

  7. Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Chem Mater 22:1915–1925

    Article  CAS  Google Scholar 

  8. Cao Y, Bai Y, Yu Q, Cheng Y, Liu S, Shi D, Gao F, Wang P (2009) J Phys Chem C 113:6290–6297

    Article  CAS  Google Scholar 

  9. Irfan A, Al-Sehemi AG, Asiri AM (2012) J Mol Model 18:3609–3615

    Article  CAS  Google Scholar 

  10. Yakhanthip T, Jungsuttiwong S, Namuangruk S, Kungwan N, Promarak V, Sudyoadsuk T, Kochpradist P (2011) J Comput Chem 32:1568–1576

    Article  CAS  Google Scholar 

  11. Liu J, Zhou D, Xu M, Jing X, Wang P (2011) Energy Environ Sci 4:3545–3551

    Article  CAS  Google Scholar 

  12. Zhang G, Bai Y, Li R, Shi D, Wenger S, Zakeeruddin SM, Gratzel M, Wang P (2009) Energy Environ Sci 2:92–95

    Article  CAS  Google Scholar 

  13. Marinado T, Hagberg DP, Hedlund M, Edvinsson T, Johansson EMJ, Boschloo G, Rensmo H, Brinck T, Sun L, Hagfeldt A (2009) Phys Chem Chem Phys 11:133–141

    Article  CAS  Google Scholar 

  14. Cui H, Ma R, Guo P, Zeng Q, Liu G, Zhang X (2010) J Mol Model 16:303–310

    Article  CAS  Google Scholar 

  15. Xu J, Zhu L, Wang L, Liu L, Bai Z, Xu W (2012) J Mol Model 18:1767–1777

    Article  CAS  Google Scholar 

  16. Martsinovich N, Troisi A (2011) Energy Environ Sci 4:4473–4495

    Article  CAS  Google Scholar 

  17. Srinivas K, Yesudas K, Bhanuprakash K, Rao VJ, Giribabu L (2009) J Phys Chem C 113:20117–20126

    Article  CAS  Google Scholar 

  18. Meng S, Kaxiras E, Nazeeruddin MK, Grätzel M (2011) J Phys Chem C 115:9276–9282

    Article  CAS  Google Scholar 

  19. Numata Y, Ashraful I, Shirai Y, Han L (2011) Chem Commun 47:6159–6161

    Article  CAS  Google Scholar 

  20. Zhang J, Li H-B, Sun S-L, Geng Y, Wu Y, Su Z-M (2012) J Mater Chem 22:568–576

    Article  CAS  Google Scholar 

  21. Zhang J, Kan Y-H, Li H-B, Geng Y, Wu Y, Su Z-M (2012) Dyes Pigments 95:313–321

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  24. Cossi M (2001) J Chem Phys 115:4708

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  26. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  28. Becke A (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  29. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  30. Wong BM, Piacenza M, Sala FD (2009) Phys Chem Chem Phys 11:4498–4508

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar D (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  32. Chai JD, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  Google Scholar 

  33. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  34. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129–12137

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09W, Revision A.02. Gaussian, Inc, Wallingford CT

    Google Scholar 

  36. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  37. Velde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  38. Fonseca Guerra C, Snijders JG, Te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391–403

    Google Scholar 

  39. 111 ADF20012.01, SCM. Theoretical Chemistry Vrije Universiteit Amsterdam.The Netherlands; http://www.scm.com

  40. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices. Academic, San Diego, CA

    Google Scholar 

  41. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  42. Asbury JB, Wang YQ, Hao E, Ghosh HN, Lian T (2001) Res Chem Intermed 27:393–406

    Article  CAS  Google Scholar 

  43. Anderson NA, Ai X, Lian T (2003) J Phys Chem B 107:14414–14421

    Article  CAS  Google Scholar 

  44. Ramakrishna G, Singh AK, Palit DK, Ghosh HN (2004) J Phys Chem B 108:4775–4783

    Article  CAS  Google Scholar 

  45. Zimmermann C, Willig F, Ramakrishna S, Burfeindt B, Pettinger B, Eichberger R, Storck W (2001) J Phys Chem B 105:9245–9253

    Article  CAS  Google Scholar 

  46. Marinado T, Nonomura K, Nissfolk J, Karlsson MK, Hagberg DP, Sun L, Mori S, Hagfeldt A (2010) Langmuir 26:2592–2598

    Article  CAS  Google Scholar 

  47. Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P (2011) Chem Commun 47:4376–4378

    Article  CAS  Google Scholar 

  48. Rühle S, Greenshtein M, Chen SG, Merson A, Pizem H, Sukenik CS, Cahen D, Zaban A (2005) J Phys Chem B 109:18907–18913

    Article  Google Scholar 

  49. Preat J, Jacquemin D, Michaux C, Perpète EA (2010) Chem Phys 376:56–68

    Article  CAS  Google Scholar 

  50. Preat J, Michaux C, Jacquemin D, Perpète EA (2009) J Phys Chem C 113:16821–16833

    Article  CAS  Google Scholar 

  51. Ning Z, Fu Y, Tian H (2010) Energy Environ Sci 3:1170–1181

    Article  CAS  Google Scholar 

  52. Adamo C, Jacquemin D (2013) Chem Soc Rev. doi:10.1039/c2cs35394f

  53. Jin J-L, Li H-B, Geng Y, Wu Y, Duan Y-A, Su Z-M (2012) Chemphyschem 13:3714–3722

    Article  CAS  Google Scholar 

  54. Chibani S, Le Guennic B, Charaf-Eddin A, Maury O, Andraud C, Jacquemin D (2012) J Chem Theory Comput 8:3303–3313

    Article  CAS  Google Scholar 

  55. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  Google Scholar 

  56. Chen P, Yum JH, Angelis FD, Mosconi E, Fantacci S, Moon S-J, Baker RH, Ko J, Nazeeruddin MK, Grätzel M (2009) Nano Lett 9:2487–2492

    Google Scholar 

  57. Khoudiakov M, Parise AR, Brunschwig BS (2003) J Am Chem Soc 125:4637–4642

    Google Scholar 

  58. Peng B, Yang S, Li L, Cheng F, Chen J (2010) J Chem Phys 132:034305–034309

    Article  Google Scholar 

  59. Liu B, Wu W, Li X, Li L, Guo S, Wei X, Zhu W, Liu Q (2011) Phys Chem Chem Phys 13:8985–8992

    Article  CAS  Google Scholar 

  60. Sánchez-de-Armas RO, Oviedo López J, San-Miguel MA, Sanz JF, Ordejón P, Pruneda M (2010) J Chem Theory Comput 6:2856–2865

    Article  Google Scholar 

  61. Sanchez-de-Armas R, San Miguel MA, Oviedo J, Sanz JF (2012) Phys Chem Chem Phys 14:225–233

    Article  CAS  Google Scholar 

  62. Sanchez-de-Armas R, San-Miguel MA, Oviedo J, Marquez A, Sanz JF (2011) Phys Chem Chem Phys 13:1506–1514

    Article  CAS  Google Scholar 

  63. Jacquemin D, Bahers TL, Adamo C, Ciofini I (2012) Phys Chem Chem Phys 14:5383–5388

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (21131001, 21273030 and 21203019), 973 Program (2009CB623605), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and the Science and Technology Development Planning of Jilin Province (201201071), the Natural Science Foundation of Jiangsu Province (BK2011408), the Opening Project of Key Laboratory for Chemistry of Low-Dimensional Materials of Jiangsu Province (JSKC10082) and the Cultivation Fund of the Key Scientific Innovation Project of Huaiyin Normal University(11HSGJBZ11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Min Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Kan, YH., Li, HB. et al. Cyano or o-nitrophenyl? Which is the optimal electron-withdrawing group for the acrylic acid acceptor of D-π-A sensitizers in DSSCs? A density functional evaluation. J Mol Model 19, 1597–1604 (2013). https://doi.org/10.1007/s00894-012-1719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1719-2

Keywords

Navigation