Skip to main content
Log in

Characterization of the structures and dynamics of phosphoric acid doped benzimidazole mixtures: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Benzimidazole-based polymer membranes like poly(2,5-benzimidazole) (ABPBI) doped with phosphoric acid (PA) are electrolytes that exhibit high proton conductivity in fuel cells at elevated temperatures. The benzimidazole (BI) moiety is an important constituent of these membranes, so the present work was performed in order to achieve a molecular understanding of the BI–PA interactions in the presence of varying levels of the PA dopant, using classical molecular dynamics (MD) simulations. The various hydrogen-bonding interactions, as characterized based on structural properties and hydrogen-bond lifetime calculations, show that both BI and PA molecules exhibit dual proton-acceptor/donor functionality. An examination of diffusion coefficients showed that the diffusion of BI decreases with increasing PA uptake, whereas the diffusion of PA slightly increases. The hydrogen-bond lifetime calculations pointed to the existence of competitive hydrogen bonding between various sites in BI and PA.

Structure and dynamics of phosphoric acid doped benzimidazole mixtures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Musto P, Karasz FE, MacKnight W (1993) Polymer 34:2934–2945

    Article  CAS  Google Scholar 

  2. Asensio JA, Sánchez EM, Gόmez-Romero P (2010) Chem Soc Rev 39:3210–3239

    Article  CAS  Google Scholar 

  3. Xing B, Savadogo O (1999) J New Mater Electrochem Syst 2:95–101

    CAS  Google Scholar 

  4. Dippel T, Kreuer KD, Lassègues JC, Rodriguez D (1993) Solid State Ionics 61:41–46

    Article  CAS  Google Scholar 

  5. Schuster MFH, Meyer WH, Schuster M, Kreuer KD (2004) Chem Mater 16:329–337

    Article  CAS  Google Scholar 

  6. Rodriguez D, Jegat C, Trinquet O, Grondin J, Lassègues JC (1993) Solid State Ionics 61:195–202

    Article  CAS  Google Scholar 

  7. Litt MH, Ameri R, Wang Y, Savinell RF, Wainright JS (1999) Mater Res Soc Symp Proc 548:313–324

    Article  CAS  Google Scholar 

  8. Asensio JA, Borrόs S, Gόmez-Romero P (2004) J Electrochem Soc 151:A304–A310

    Article  CAS  Google Scholar 

  9. Agmon N (1995) Chem Phys Lett 244:456–462

    Article  CAS  Google Scholar 

  10. Asensio JA, Gomez-Romero P (2005) Fuel Cells 5:336–343

    Article  CAS  Google Scholar 

  11. Krishnan P, Park JS, Kim CS (2006) J Power Sources 159:817–823

    Article  CAS  Google Scholar 

  12. Wannek C, Kohnen B, Oetjen HF, Lippert H, Mergel J (2008) Fuel Cells 8:87–95

    Article  CAS  Google Scholar 

  13. Li S, Fried JR, Colebrook J, Burkhardt J (2010) Polymer 51:5640–5648

    CAS  Google Scholar 

  14. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theor Comput 4:435–447

    Article  CAS  Google Scholar 

  15. Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  16. Spieser SAH, Leeflang BR, Kroon-Batenburg LMJ, Kroon J (2000) J Phys Chem A 104:7333–7338

    Article  CAS  Google Scholar 

  17. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045–1097

    Article  CAS  Google Scholar 

  18. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford Science, New York

    Google Scholar 

  19. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  20. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101–014107

    Article  Google Scholar 

  21. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  22. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Padersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  23. Nosé S (1984) Mol Phys 52:255–268

    Article  Google Scholar 

  24. Hoover WG (1985) Phys Rev A 31:1695–1697

    Article  Google Scholar 

  25. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  26. Nosé S, Klein ML (1983) Mol Phys 50:1055–1076

    Article  Google Scholar 

  27. Vijayan N, Balamurugan N, Ramesh Babu R, Gopalakrishnan R, Ramasamy P, Harrison WTA (2004) J Crystal Growth 267:218–222

    Article  CAS  Google Scholar 

  28. Egan EP, Luff BB (1955) Ind Eng Chem 47:1280–1281

    Article  CAS  Google Scholar 

  29. Tromp RH, Spieser SH, Neilson GW (1999) J Chem Phys 110:2145–2150

    Article  CAS  Google Scholar 

  30. Tsuchida EJ (2006) J Phys Soc Jpn 75:54801–54805

    Article  Google Scholar 

  31. Dippel T, Kreuer KD, Lassegues JC, Rodriguez D (1993) Solid State Ionics 61:41–46

    Article  CAS  Google Scholar 

  32. Li S, Fried JR, Sauer J, Colebrook J, Dudis DS (2011) Int J Quantum Chem 111:3212–3229

    Article  CAS  Google Scholar 

  33. Van der Spoel D, van Maaren PJ, Larsson P, Tîmneanu N (2006) J Phys Chem B 110:4393–4398

    Article  Google Scholar 

  34. Luzar A, Chandler D (1993) J Chem Phys 98:8160–8173

    Article  CAS  Google Scholar 

  35. Starr FW, Nielsen JK, Stanley HE (1999) Phys Rev Lett 82:2294–2297

    Google Scholar 

  36. Starr FW, Nielsen JK, Stanley HE (2000) Phys Rev E 62:579–587

    Google Scholar 

  37. Stillinger FH (1975) Adv Chem Phys 31:1–101

    Google Scholar 

  38. Luzar A, Chandler D (1996) Nature 379:55–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work used the computing resources provided by the Indian Institute of Science Education and Research, Pune (IISER Pune), and the National Chemical Laboratory, Pune. MM acknowledges IISER Pune for graduate fellowship support. SP acknowledges the Council of Scientific and Industrial Research (CSIR) for fellowship support. The authors thank Anurag Prakash Sunda for useful discussions. AV acknowledges the Department of Science and Technology (SR/S1/PC/28/2009) and the Department of Science and Technology, Nanomission (SR/NM/NS-42/2009) for financial support. SR and AV acknowledge the CSIR XIth Energy Plan (NWP-0022-1) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudip Roy or Arun Venkatnathan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 712 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

More, M., Pahari, S., Roy, S. et al. Characterization of the structures and dynamics of phosphoric acid doped benzimidazole mixtures: a molecular dynamics study. J Mol Model 19, 109–118 (2013). https://doi.org/10.1007/s00894-012-1519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1519-8

Keywords

Navigation