Skip to main content
Log in

Detection of diabetic nephropathy from advanced glycation endproducts (AGEs) differs in plasma and urine, and is dependent on the method of preparation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Increased advanced glycation endproducts (AGEs) and oxidation products (OPs) have been proposed as pathogenic for diabetic nephropathy (DN). We investigated the relationship between AGEs and OPs measured in different plasma and urine preparations, and progression of DN in 103 young, normoalbuminuric, normotensive participants with type 1 diabetes in the Natural History of Diabetic Nephropathy Study. The primary endpoint was electron microscopy-measured change in glomerular basement membrane (GBM) width from baseline to 5 years; change in mesangial fractional volume was a secondary endpoint. Fast progressors (FP) were defined as the upper quartile (n = 24) of rate of GBM thickening; slow progressors (SP) were the remainder (n = 79). Four AGEs [3-deoxyglucosone and methylglyoxal hydroimidazolones (DG3H1, MGH1) and carboxymethyl and ethyl lysine (CML, CEL)], and two oxidation products methionine sulfoxide and aminoadipic acid were measured by liquid chromatography, triple quadrupole mass spectrometry. Measurements were done on 10 K plasma filtrates and plasma proteolytic digests (PPD) at year 5, and at four time points over 5 years for urinary 10 K filtrates. Urinary filtrate CEL levels were significantly higher in FP, but not after adjustment for HbA1c, sex, and duration of diabetes. MGHI, CEL, and CML plasma filtrate levels were significantly higher in FP relative to SP (p < 0.05). In PPD, only MGHI showed borderline significantly higher levels in FP relative to SP (p = 0.067), while no other product showed correlation. AGE and OP measurements were not correlated with mesangial expansion. In plasma filtrates, HbA1c at year 5 accounted for 4.7 % of the variation in GBM width. The proportion of variation in GBM width was increased to 11.6 % when MGHI, CEL, and CML were added to the model (6.9 % increase).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmed N, Babaei-Jadidi R, Howell S, Beisswenger P, Thornalley P (2005a) Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia 48:1590–1603

    Article  CAS  PubMed  Google Scholar 

  • Ahmed N, Babaei-Jadidi R, Howell S, Thornalley P, Beisswenger P (2005b) Glycated and oxidised protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 28:2465–2471

    Article  CAS  PubMed  Google Scholar 

  • Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T (1983) Diabetic nephropathy in type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25(6):496–501

    Article  CAS  PubMed  Google Scholar 

  • Beisswenger P (2012) Glycation and biomarkers of vascular complications of diabetes. Amino Acids Glycation 42:1171–1183

    Article  CAS  Google Scholar 

  • Beisswenger P, Howell S, O’Dell R, Wood M, Touchette A, Szwergold B (2001) Alpha dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care 24:726–732

    Article  CAS  PubMed  Google Scholar 

  • Beisswenger P, Drummond K, Nelson R, Howell S, Szwergold B, Mauer M (2005) Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes 54:3274–3281

    Article  CAS  PubMed  Google Scholar 

  • Beisswenger P, Howell S, Szwergold B, Rich S, Russell G, Kim Y, Mauer M (2008) Progression of diabetic nephropathy is predicted by increased oxidative stress and decreased deglycation. Diabetologia 51(Suppl1):S24

    Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Caramori ML, Fioretto P, Mauer M (2000) The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? [Review] [91 refs]. Diabetes 49(9):1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Caramori ML, Kim Y, Huang C, Fish AJ, Rich SS, Miller ME, Russell G, Mauer M (2002) Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. [Erratum appears in diabetes 2002 Apr; 51(4):1294]. Diabetes 51(2):506–513

    Article  CAS  PubMed  Google Scholar 

  • Cefalu WT (2008) Glycemic targets and cardiovascular disease. N Engl J Med 358(24):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A, Hanefeld M, Leiter L, Monnier L, Moses A, Owens D, Tajima N, Tuomilehto J (2004) Postprandial glucose regulation and diabetic complications. [Review] [58 refs]. Arch Intern Med 164(19):2090–2095

    Article  CAS  PubMed  Google Scholar 

  • DCCT Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Eng J Med 329(14):977–986

    Article  Google Scholar 

  • DCCT Research Group (1997) Clustering of long-term complications in families with diabetes in the diabetes control and complications trial. Diabetes 46:1829–1839

    Article  Google Scholar 

  • DCCT/EDIC Complications Research Group (2002) Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. Jama 287(19):2563–2569

    Article  Google Scholar 

  • Dluhy RG, McMahon GT (2008) Intensive glycemic control in the ACCORD and ADVANCE trials. N Engl J Med 358(24):2630–2633

    Article  CAS  PubMed  Google Scholar 

  • Drexel H, Klocker H, Patsch JR, Breier C, Braunsteiner H (1987) Measurement of glycated protein by a rapid and specific method for absolute quantification of lysine-bound glucose. Clin Chem 339:1656–1659

    Google Scholar 

  • Drummond K, Mauer M, International Diabetic Nephropathy Study Group (2002) The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 51(5):1580–1587

    Article  CAS  PubMed  Google Scholar 

  • Drummond KN, Kramer MS, Suissa S, Levy-Marchal C, Dell’Aniello S, Sinaiko A, Mauer M, G. International Diabetic Nephropathy Study (2003) Effects of duration and age at onset of type 1 diabetes on preclinical manifestations of nephropathy. Diabetes 52(7):1818–1824

    Article  CAS  PubMed  Google Scholar 

  • Fioretto P, Steffes MW, Mauer M (1994) Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes 43(11):1358–1364

    Article  CAS  PubMed  Google Scholar 

  • Fioretto P, Steffes MW, Barbosa J, Rich SS, Miller ME, Mauer M (1999) Is diabetic nephropathy inherited? Studies of glomerular structure in type 1 diabetic sibling pairs. Diabetes 48(4):865–869

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. [Review] [45 refs]. Nature 426(6968):895–899

    Article  CAS  PubMed  Google Scholar 

  • Krolewski AJ, Warram JH, Kahn R, Kahn LI, Kahn CR (1987) Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. N Eng J Med 18:267–273

    Google Scholar 

  • Malencik D, Sprouse J, Swanson C, Anderson S (1996) Dityrosine: preparation, isolation, and analysis. Anal Biochem 242:202–213

    Article  CAS  PubMed  Google Scholar 

  • Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, Drummond K, Donnelly S, Goodyer P, Gubler MC, Klein R (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361(1):40–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mogensen CE, Christensen C (1984) Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 311:89–93

    Article  CAS  PubMed  Google Scholar 

  • Monnier L, Colette C (2006) Contributions of fasting and postprandial glucose to hemoglobin A1c. [Review] [20 refs]. Endocr Pract 1:42–46

    Article  Google Scholar 

  • Monnier VM, Sell DR, Genuth S (2005) Glycation products as markers and predictors of the progression of diabetic complications. [Review] [78 refs]. Ann N Y Acad Sci 1043:567–581

    Article  CAS  PubMed  Google Scholar 

  • Perkins BA, Krolewski AS (2009) Early nephropathy in type 1 diabetes: the importance of early renal function decline. Curr Opin Nephrol Hypertens 18(3):233–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettitt D, Saad M, Bennett P, Nelson R, Knowler W (1990) Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 33(7):438–443

    Article  CAS  PubMed  Google Scholar 

  • Prager TC, Wilson DJ, Avery GD (1981) Vitreous fluorophotometry: identification of sources of variability. Invest Ophthalmol Vis Sci 21:854–864

    CAS  PubMed  Google Scholar 

  • Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE (2002) Defining the relationship between plasma glucose and HbA(1c): analysis of glucose profiles and HbA(1c) in the diabetes control and complications trial. Diabetes Care 25(2):275–278

    Article  CAS  PubMed  Google Scholar 

  • Roper J, McIlwain H (1948) Preparation and antibacterial action of some compounds structurally related to glutamic acid their applications in microbiological determinations of small quantities of glutamine. Biochem J 42:485–492

    CAS  PubMed  Google Scholar 

  • Seaquist ER, Goetz FC, Rich S, Barbosa J (1989) Familial clustering of diabetic kidney disease: evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320:1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M (2005) The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54(7):2164–2171

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375(Pt 3):581–592

    Article  CAS  PubMed  Google Scholar 

  • Turner RC, Cull CA, Frighi V, Holman RR (1999) Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281(21):2005–2012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Juvenile Diabetes Research Foundation and the work was presented as an oral abstract at the “11th International Symposium on the Maillard Reaction”, in Nancy, France on Sept 19, 2012.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Beisswenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beisswenger, P.J., Howell, S.K., Russell, G. et al. Detection of diabetic nephropathy from advanced glycation endproducts (AGEs) differs in plasma and urine, and is dependent on the method of preparation. Amino Acids 46, 311–319 (2014). https://doi.org/10.1007/s00726-013-1533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1533-x

Keywords

Navigation