Skip to main content
Log in

Repetitiveness and underlying characteristics of climatologic parameters in winter

Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Starting from the standpoint that there are seasonal differences of climate variations on both global and local level, the authors of this paper had focused on analyzing climatologic parameters in winter months. The trends of several important parameters were detected, with temperature and precipitation having increasing, but number of ice days and snow cover having decreasing trends. Spectral analysis showed repetitive nature of climatologic parameters, some of them having the same or similar periods of about 6 to 7 years, 10 to 12 or 17.5 years, and 22 to 24 years. The precipitation has periodicity of 8 and 14 years. Further analysis of the underlying structure of the data by principal component analysis detected three easily explained dimensions: Temperature-Snow, Precipitation-Cyclone and Spring-in-Winter dimension. The spectral analysis of three virtual variables obtained by principal component analysis confirmed good agreement of original variables with the virtual dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beecham S, Chowdhury RK (2010) Temporal characteristics and variability of point rainfall: a statistical and wavelet analysis. Int J Climatol 30(3):458–473

    Google Scholar 

  • Brunetti M, Buffoni L, Mangianti F, Maugeri M, Nanni T (2004) Temperature, precipitation and extreme events during the last century in Italy. Glob Planet Chang 40:141–149

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Monti F, Nanni T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series. Int J Climatol 26:345–381

    Article  Google Scholar 

  • Butler CJ, Garcia-Suarez A, Palle E (2007) Trends and cycles in long Irish meteorological series. Biol Environ Proc R Ir Acad 107(3):157–165

    Article  Google Scholar 

  • Currie RG (1996) Mn and Sc signals in North-Atlantic tropical cyclone occurrence. Int J Climatol 16(4):427–439

    Article  Google Scholar 

  • Da Silva RR, Avissar R (2005) The impacts of luni-solar oscillation on the Arctic oscillation. Geophys Res Lett 32:L22703. doi:10.1029/2005GL023418

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • Erlykin AD, Sloan T, Wolfendale AW (2009) Solar activity and the mean global temperature. Environ Res Lett 4 doi:10.1088/1748-9326/4/1/014006

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovermental Panel of Climate Change (IPCC). Cambridge University Press, 944pp

  • Humlum O, Solheim JE, Stordahl K (2011) Spectral analysis of the Svalbard temperature record 1912–2010. Adv Meteorol. doi:10.1155/2011/175296

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: Climatic Significance and Environmental Impact, vol 134, Geophysical Monograph Series. American Geophysical Union, Washington, pp 1–35

    Chapter  Google Scholar 

  • IPCC (2001) Climate change 2001: impacts, adaptation and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovermental Panel of Climate Change. Cambridge Universty Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007—the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge Universty Press, Cambridge

    Google Scholar 

  • Kendal M (1975) Multivariate analysis. Griffin, London

    Google Scholar 

  • Klein Tank AMG, Konnen GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Climate 16:3665–3680

    Article  Google Scholar 

  • Klyashtorin LB, Borisov V, Lyubushin A (2009) Cyclic changes of climate and major commercial stocks of the Barents Sea. Mar Biol Res 5(1):4–17

    Article  Google Scholar 

  • Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898

    Article  Google Scholar 

  • Moberg A, Jones PD (2005) Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901–99. Int J Climatol 25:1149–1171

    Article  Google Scholar 

  • Munoz A, Ojeda J, Sanchez-Valverde B (2002) Sunspot-like and ENSO/NAO-like periodicities in lacustrine laminated sediments of the Pliocene Villarroya Basin (La Rioja, Spain). J Paleolimnol 27:453–463

    Article  Google Scholar 

  • Paskota M, Todorović N, Vujović D (2012) Separation of the time periods with dominant climatological parameters by multivariate statistical analysis. Int J Climatol. doi:10.1002/joc.3453

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2(6):559–572

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77: the art of scientific computing. Cambridge Univ Press, New York, 963 pp

    Google Scholar 

  • Priestley MB (1981) Spectral analysis and time series. Academic, San Diego, p 890

    Google Scholar 

  • RHSS (1987) Results of observations at the meteorological observatory in Belgrade in the period 1887–1986. Republic Hydrometeorological Service of Serbia, Belgrade, p 131

    Google Scholar 

  • Schuster A (1898) On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. J Geophys Res 3:13–41

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation Part II. Trends. J Clim 13:1018–1036

    Article  Google Scholar 

  • Tlatov AG, Makarov VI (2005) 22-year variations of the solar rotation. Large-scale structures and their role in solar activity. ASP Conf Ser 346:409–414

    Google Scholar 

  • Vincent LA, Peterson TC, Barros VR, Marino MB, Rusticucci M, Carrasco G, Ramirez E, Alves LM, Ambrizzi T, Berlato MA, Grimm AM, Marengo JA, Molion L, Moncunill DF, Rebello E, Anunciacao YMT, Quintana J, Santos JL, Baez J, Coronel G, Garcia J, Trebejo I, Bidegain M, Haylock MR, Karoly D (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Climate 18:5011–5023

    Article  Google Scholar 

  • Vujović D, Todorović N (2008) The changes in extreme air temperatures during the period 1887–2007 at Belgrade, Serbia. Ovidius Univ Ann Ser 1(10):119–124

    Google Scholar 

  • Vujović D, Todorović N, Paskota M (2007) Analysis of extreme summer temperatures in Belgrade. 8th European Conference on Applications of Meteorology, San Lorenzo de el Escorial (Madrid), Spain, 1–5 October, Abstract in Conference Abstracts 4: ISSN 1812–7053

  • Whittle P (1952) The simultaneous estimation of a time series harmonic components and covariance structure. Trabajos Estadisica 3:43–57

    Article  Google Scholar 

Download references

Acknowledgments

The Serbian Ministry of Education and Science supported this study under Grant 176013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Vujović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paskota, M., Vujović, D. & Todorović, N. Repetitiveness and underlying characteristics of climatologic parameters in winter. Theor Appl Climatol 113, 317–328 (2013). https://doi.org/10.1007/s00704-012-0788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-012-0788-6

Keywords

Navigation