Skip to main content

Advertisement

Log in

“Normoalbuminuric” diabetic nephropathy: tubular damage and NGAL

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The aim of this study was to demonstrate that neutrophil gelatinase-associated lipocalin (NGAL) increased before the onset of microalbuminuria in patients with type 1 diabetes mellitus (T1DM), representing an important biochemical parameter with high sensitivity and specificity to make a precocious diagnosis of “normoalbuminuric” diabetic nephropathy (DN). Serum NGAL (sNGAL) and urinary NGAL (uNGAL) levels were evaluated in a cohort of fifty patients affected by T1DM. They had no signs of clinical nephropathy. Thirty-five healthy subjects (HS) were recruited. sNGAL levels were significantly higher compared with those measured in HS [193.7 (103.2–405.4) vs. 46.4 (39.8–56.2) ng/ml; p < 0.0001], as were uNGAL levels [25.5 (14.2–40.2) vs. 6.5 (2.9–8.5) ng/ml; p < 0.0001]. sNGAL was found to be directly correlated with glycated hemoglobin. uNGAL also positively correlated with albuminuria, whereas an inverse correlation was found with uric acid. After multivariate analysis, significance was maintained for the correlation between uNGAL and microalbuminuria. In ROC analysis, sNGAL showed a good diagnostic profile such as uNGAL. NGAL increases in patients with T1DM, even before diagnosis of microalbuminuria representing an early biomarker of “normoalbuminuric” DN with a good sensitivity and specificity. NGAL measurement could be useful for the evaluation of early renal involvement in the course of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fioretto P, Mauer M (2007) Histopathology of diabetic nephropathy. Semin Nephrol 27:195–207

    Article  PubMed  Google Scholar 

  2. Fathy Manal A, Elkady Manal M, Fathy Hanan A, Awad Seham A, Elmenshawy Amal A (2009) Estimation of renal tubular markers for predicting early stage diabetic nephropathy in Egyptian children with type I diabetes mellitus. Res J Med Med Sci 4:207–211

    CAS  Google Scholar 

  3. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G (2004) Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 27:195–200

    Article  PubMed  Google Scholar 

  4. Thomas MC, Burns WC, Cooper ME (2005) Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis 12:177–186

    Article  PubMed  CAS  Google Scholar 

  5. Mason RM, Wahab NA (2003) Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14:1358–1373

    Article  PubMed  CAS  Google Scholar 

  6. Wolf G (2000) Cell cycle regulation in diabetic nephropathy. Kidney Int Suppl 77:59–66

    Article  Google Scholar 

  7. Pfleiderer S, Zimmerhackl LB, Kinne R, Manz F, Schuler G, Brandis M (1993) Renal proximal and distal tubular function is attenuated in diabetes mellitus type 1 as determined by the renal excretion of alpha 1-microglobulin and Tamm-Horsfall protein. Clin Investig 71:972–977

    Article  PubMed  CAS  Google Scholar 

  8. Yaqoob M, McClelland P, Patrick AW et al (1994) Evidence of oxidant injury and tubular damage in early diabetic nephropathy. QJM 87:601–607

    PubMed  CAS  Google Scholar 

  9. Dunlop M (2000) Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int Suppl 77:S3–S12

    Article  PubMed  CAS  Google Scholar 

  10. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–789

    Article  PubMed  CAS  Google Scholar 

  11. Bolignano D, Donato V, Coppolino G et al (2008) Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis 52:595–605

    Article  PubMed  CAS  Google Scholar 

  12. Mishra J, Dent C, Tarabishi R et al (2005) Neutrophil gelatinase-associated lipocalin as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238

    Article  PubMed  CAS  Google Scholar 

  13. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S (2006) Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol 26:287–292

    Article  PubMed  CAS  Google Scholar 

  14. Bolignano D, Lacquaniti A, Coppolino G, Campo S, Arena A, Buemi M (2008) Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press Res 31:255–258

    Article  PubMed  CAS  Google Scholar 

  15. Bolignano D, Lacquaniti A, Coppolino G et al (2009) Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 4:337–344

    Article  PubMed  CAS  Google Scholar 

  16. Guo L, Cheng Y, Wang X et al (2012) Association between microalbuminuria and cardiovascular disease in type 2 diabetes mellitus of the Beijing Han nationality. Acta Diabetol 49:65–71

    Article  CAS  Google Scholar 

  17. Bolignano D, Coppolino G, Lacquaniti A, Buemi M (2010) From kidney to cardiovascular diseases: NGAL as a biomarker beyond the confines of nephrology. Eur J Clin Invest 40:273–276

    Article  PubMed  CAS  Google Scholar 

  18. Bolignano D, Lacquaniti A, Coppolino G et al (2009) Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res 32:91–98

    Article  PubMed  CAS  Google Scholar 

  19. Zachwieja J, Soltysiak J, Fichna P et al (2009) Normal-range albuminuria does not exclude nephropathy in diabetic children. Pediatr Nephrol 25:51–1445

    Google Scholar 

  20. Soggiu A, Piras C, Bonizzi L et al (2012) A discovery-phase urine proteomics investigation in type 1 diabetes. Acta Diabetol 49:453–464

    Article  PubMed  CAS  Google Scholar 

  21. Phillips AO (2003) The role of renal proximal tubular cells in diabetic nephropathy. Curr Diab Rep 3:491–496

    Article  PubMed  Google Scholar 

  22. Mori K, Lee HT, Rapoport D et al (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621

    PubMed  CAS  Google Scholar 

  23. Kuwabara T, Mori K, Mukoyama M et al (2009) Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules and distal nephrons. Kidney Int 75:285–294

    Article  PubMed  CAS  Google Scholar 

  24. Nielsen SE, Andersen S, Zdunek D, Hess G, Parving HH, Rossing P (2011) Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int 79:1113–1118

    Article  PubMed  CAS  Google Scholar 

  25. Nielsen SE, Sugaya T, Hovind P, Baba T, Parving HH, Rossing P (2010) Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients. Diabetes Care 33:1320–1324

    Article  PubMed  CAS  Google Scholar 

  26. Stratton IM, Adler AI, Neil HA et al (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–412

    Article  PubMed  CAS  Google Scholar 

  27. Fukuhara M, Matsumura K, Wakisaka M et al (2007) Hyperglycemia promotes microinflammation as evaluated by C-reactive protein in the very elderly. Intern Med 46:207–212

    Article  PubMed  Google Scholar 

  28. Stern MP (1998) The effect of glycemic control on the incidence of macrovascular complications of type 2 diabetes. Arch Fam Med 7:155–162

    Article  PubMed  CAS  Google Scholar 

  29. Nambi V (2005) The use of myeloperoxidase as a risk marker for atherosclerosis. Curr Atheroscler Rep 7:127–131

    Article  PubMed  CAS  Google Scholar 

  30. Elneihoum AM, Falke P, Hedblad B, Lindga¨rde F, Ohlsson K (1997) Leukocyte activation in atherosclerosis: correlation with risk factors. Atherosclerosis 131:79–84

    Article  PubMed  CAS  Google Scholar 

  31. Malyszko J, Bachorzewska-Gajewska H, Malyszko JS, Pawlak K, Dobrzycki S (2008) Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in hypertensive and normotensive patients with coronary artery disease. Nephrology 13:153

    Article  PubMed  CAS  Google Scholar 

  32. Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH (2009) Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes an inception cohort study. Diabetes 58:1668–1671

    Article  PubMed  CAS  Google Scholar 

  33. Mene P, Punzo G (2008) Uric acid: bystander or culprit in hypertension and progressive renal disease? J Hypertens 26:2085–2092

    Article  PubMed  CAS  Google Scholar 

  34. Siu YP, Leung KT, Tong MKH, Kwan TH (2006) Use of allopurinol in slowing the progression of renal disease through its ability in lowering serum uric acid level. Am J Kidney Dis 47:51–59

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to disclose that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Buemi.

Additional information

Communicated by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacquaniti, A., Donato, V., Pintaudi, B. et al. “Normoalbuminuric” diabetic nephropathy: tubular damage and NGAL. Acta Diabetol 50, 935–942 (2013). https://doi.org/10.1007/s00592-013-0485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-013-0485-7

Keywords

Navigation