Skip to main content
Log in

Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The effect of arbuscular mycorrhizal fungi (AMF) and drought on fruit quality was evaluated in chile ancho (Capsicum annuum L. cv San Luis). AMF treatments were (1) Glomus fasciculatum (AMFG), (2) a fungal species consortium from the forest “Los Tuxtla” in Mexico (AMFT), (3) a fungal species consortium from the Sonorian desert in Mexico (AMFD), and (4) a noninoculated control (NAMF). Plants were exposed to a 26-day drought cycle. Fruit quality was determined by measuring size (length, width, and pedicel length), color, chlorophyll, and carotenoid concentration. Under nondrought conditions, AMFG produced fruits that were 13% wider and 15% longer than the NAMF treatment. Under nondrought conditions, fruit fresh weight was 25% greater in the AMFG treatment compared to the NAMF. Under drought, fruits in the AMFT and AMFD treatments showed fresh weights similar to those in the NAMF treatment not subjected to drought. Fruits of the AMFG treatment subjected to drought showed the same color intensity and chlorophyll content as those of the nondroughted NAMF treatment and carotenoid content increased 1.4 times compared to that in the NAMF not exposed to drought. It is interesting to note that fruits in the AMFD treatment subjected to drought and the NAMF treatment not exposed to drought reached the same size. AMFD treatment increased the concentration of carotenes (1.4 times) under nondrought conditions and the concentration of xanthophylls (1.5 times) under drought when compared to the nondroughted NAMF treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott JA (1999) Quality measurement of fruit and vegetables. Postharvest Biol Technol 15:207–225

    Article  Google Scholar 

  • Aguilera-Gómez L, Davies FT Jr, Olalde-Portugal V, Duray SA, Phavaphutanon L (1999) Influence of phosphorus and endomycorrhiza (Glomus intraradices) on gas exchange and plant growth of chile ancho pepper (Capsicum annuum L. cv. San Luis). Photosynthetica 36:441–449

    Article  Google Scholar 

  • Alamillo JM, Bartels D (2001) Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plNT Craterostigma plantagineum. Plant Sci 160:1161–1170

    Article  CAS  PubMed  Google Scholar 

  • AOAC (1984) Official methods of analysis, 14th edn. Association of Official Analytical Chemist, Arlington

    Google Scholar 

  • Augé RM (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bagyaraj DJ, Sreeramulu KR (1982) Preinoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer. Plant Soil 69:375–381

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Ames RN, Thomas RS (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol Plant 72:565–571

    Article  CAS  Google Scholar 

  • Brady CJ (1987) Fruit ripening. Annu Rev Plant Physiol 38:155–178

    Article  CAS  Google Scholar 

  • Charron G, Furlan V, Bernier-Cardou M, Doyon G (2001) Response of onion plants to arbuscular mycorrhizae 1. Effects of inoculation method and phosphorus fertilization on biomass and bulb firmness. Mycorrhiza 11:187–197

    Article  CAS  Google Scholar 

  • Davies FT Jr, Linderman RG (1991) Short tem effects of phosphorus and VA-mycorrhizal fungi on nutrition, growth and development of Capsicum annuum L. Sci Hortic 45:333–338

    Article  CAS  Google Scholar 

  • Davies FT Jr, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration—response on gas exchange and water relations. Physiol Plant 87:45–53

    Article  CAS  Google Scholar 

  • Davies FT Jr, Olalde-Portugal V, Aguilera-Gómez L, Alvarado MJ, Ferrera-Cerrato RC, Boutton TW (2002) Alleviation of drought stress of chile ancho pepper (Capsicum annuum L. cv San Luis) with arbuscular mycorrhiza indigenous to México. Sci Hortic 92:347–359

    Article  Google Scholar 

  • Demir S (2004) Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turk J Biol 28:85–90

    Google Scholar 

  • Duffy EM, Cassells AC (2000) The effect of inoculation of potato (Solanum tuberosum L.) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution. Appl Soil Ecol 15:137–144

    Article  Google Scholar 

  • Estrada B, Pomar F, Díaz J, Merino F, Bernal MA (1999) Pungency level in fruit of Padrón pepper with different water supply. Sci Hortic 81:385–396

    Article  Google Scholar 

  • FAUANL (1994) Paquete de diseños experimentales, versión 2.5. Olivares-Sáenz E. Facultad de Agronomía UANL. Marín, NL

    Google Scholar 

  • Govindarajan VS, Rajalakshmi D, Chand N (1987) Capsicum: production, technology, chemistry and quality. Part IV. Evaluation of quality. Crit Rev Food Sci Nutr 25:185–282

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. In: Technical communication, 2nd edn. Commonwealth Agricultural Bureaux, London

    Google Scholar 

  • Inglese P, Barone E, Gullo G (1996) The effect of complementary irrigation on fruit growth, ripening pattern and oil characteristics of olive (Olea europaea L.) cv. Carolea. J Hortic Sci 71:257–263

    Article  Google Scholar 

  • Janoudi AK, Widders IE, Flore JA (1993) Water deficits and environmental factors affect photosynthesis in leaves of cucumber (Cucumis sativus). J Am Soc Hortic Sci 118:366–370

    Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citullus lanatus Thunb.) grown under well-watered and water stressed conditions. Plant Soil 253:287–292

    Article  CAS  Google Scholar 

  • Labore CJA, Pozo CO (1982) Presente y pasado del chile en México. Instituto Nacional de Investigaciones Agrícolas, México DF

    Google Scholar 

  • Lancaster JE, Lister CE, Reay P, Triggs CM (1997) Influence of pigment composition on skin color in a wide range of fruit and vegetables. J Am Soc Hortic Sci 122:594–598

    Google Scholar 

  • Lester GE, Oebker NF, Coons J (1994) Preharvest furrow and drip irrigation schedule effects on postharvest muskmelon quality. Postharvest Biol Technol 1:57–63

    Article  Google Scholar 

  • Mínguez-Mosquera MI, Hornero-Méndez D (1994) Formation and transformation of pigments during the fruit ripening of Capsicum annuum cv Bola and Agridulce. J Agric Food Chem 42:38–44

    Article  Google Scholar 

  • Ocampo-Jiménez O (2003) Efecto de gremios de hongos micorrícicos arbusculares sobre el crecimiento y fiosiología de chile (Capsicum annum L. cv San Luis) bajo déficit hídrico. Ph.D. thesis. CINVESTAV, Unidad Irapuato, Mexico

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Gómez M (1995) Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Díaz M, Honrubia M (1994) Water relations and alleviation of drought stress in mycorrhizal plants. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Boston, pp 167–178

    Chapter  Google Scholar 

  • Schreiner M, Huyskens-Keil S, Krumbein A, Schonhof I, Linke M (2000) Environmental effects on product quality. In: Shewfelt RL, Brückner B (eds) Fruit and vegetable quality an integrated view. Technomic, Lancaster, pp 85–94

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgements

The authors thank M. C. Rosalinda Serrato Flores and M. C. Enrique Ramírez Chávez for techinical assistance. Financial support for this study was provided by the National Council of Science and Technology of Mexico (CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Olalde-Portugal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mena-Violante, H.G., Ocampo-Jiménez, O., Dendooven, L. et al. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16, 261–267 (2006). https://doi.org/10.1007/s00572-006-0043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0043-z

Keywords

Navigation