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Abstract The paper deals with the implementation of

optimized neural networks (NNs) for state variable esti-

mation of the drive system with an elastic joint. The signals

estimated by NNs are used in the control structure with a

state-space controller and additional feedbacks from the

shaft torque and the load speed. High estimation quality is

very important for the correct operation of a closed-loop

system. The precision of state variables estimation depends

on the generalization properties of NNs. A short review of

optimization methods of the NN is presented. Two tech-

niques typical for regularization and pruning methods are

described and tested in detail: the Bayesian regularization

and the Optimal Brain Damage methods. Simulation results

show good precision of both optimized neural estimators

for a wide range of changes of the load speed and the load

torque, not only for nominal but also changed parameters

of the drive system. The simulation results are verified in a

laboratory setup.

Keywords Neural networks � State estimation � Electrical

drive � Two-mass system � Training methods � Bayesian

regularization � Optimal Brain Damage method

1 Introduction

In most electrical drives, the elasticity of the shaft between

a driving motor and a load machine must be taken into

account. In order to obtain drive response to a reference

signal with high dynamics, and to minimize torsional

vibrations, different control methods of the drive system

with elastic joint, based on control theory, like PI/PID

methods, state controller-based methods, sliding-mode, and

adaptive or predictive control methods [1–6] are used. All

these control methods require feedbacks from different

mechanical state variables of the system (load side speed,

torsional torque, load torque). These mechanical variables

can be measured, but only in laboratory environments. In

the real drive systems, in industry, torsional or load torque

can not be measured, as the torque transducer is never

mounted between the driven motor and the loading

machine because lack of space and generation of additional

(high) cost. Similarly, the load side speed is hardly mea-

sured because lack of place for additional speed transducer

and additional cabling, which is troublesome. In such a

case, only estimation of those state variables is the solution

for the industry conditions. This is the reason why we have

to estimate the torsional torque and the load side speed of a

two-mass system.

In many applications connected with electrical drives,

algorithmic methods are applied for the non-measurable

state variables estimation, for example, the Kalman filters

[4, 5] and the Luenberger observers [6]. However, the

algorithmic estimators require the mathematical model and

parameter knowledge of the system, which could change

during the system operation—so to obtain the good esti-

mation quality the parameters of the state estimators must

be tuned on-line (by on-line plant parameters’ identifica-

tion or estimation). Alternative ways of solving this prob-

lem are estimators based on neural networks (NNs). Such

estimators do not need a mathematical model and param-

eters of the system, only the training data are required [7–9]

for the estimator design. Moreover, the generalization
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ability causes that neural estimators are less sensitive to

parameters or measurement signals uncertainties.

However, in the case of NN applications in state

variable estimation, the determination of NN structure

for a specific task is one of the most important problems.

This structure should be carefully chosen to obtain good

estimation quality also in the case of NN input data

different than those used in the training procedure. It

means that a suitable generalization ability is required.

Data generalization is one of the main advantages of the

NN and consists in the possibility of solving a given task

by a trained network in case the elements of the input

vector are not taken into account in the NNs training

process. In the technical literature, many methods for

the improvement of the NN generalization properties

are presented. It is possible to distinguish three main

trends [7]:

• impact on the length of the learning process (early

stopping) [10],

• application of regularisation method [11],

• modification of neural networks topology (growing or

pruning) [12, 13].

Many methods for NN structure optimization are pre-

sented in the literature. Most of them require the initial

choice of NN structure, and then, selected neural connec-

tions are eliminated. One of the simplest ways to choose a

specific inter-node connection for elimination is the anal-

ysis of absolute values of NNs’ weights. Another method

consists in checking the influence of each connection on

the generalization error. In this case, the generalization

errors before and after the elimination each weight factor

are compared [7, 14].

Very good results are obtained with the sensitivity

methods. These algorithms are based on the analysis of

sensitivity of the cost function to deletion of individual

connections. The most important methods in this category

are the Optimal Brain Damage (OBD) [15, 16] and Optimal

Brain Surgeon [17, 18] methods.

In many techniques, genetic algorithms are also applied

for pruning the inter-neural connections [19].

The other solution is adding the regularization element

to the cost function [17]. It consists in the modification of

the objective function used in the training algorithm, which

is next minimized in any iteration. In the extended form of

such cost function, elements dependent on values of the

inter-neural connection weights are added to the standard

cost function; then, the problem of the selection of regu-

larization parameters in the modified objective function

appears. In this work, the regularization method based on

the Bayesian interpretation of NNs is applied. This algo-

rithm gives analytical formulas for automatic computation

of optimal regularization parameters [20, 21].

It is reported in the literature that the Bayesian regu-

larization method can significantly improve the quality of

state variable estimation. So in this paper, the effectiveness

of this method is compared with the previously used OBD

method (which is rather complicated in practice [16]) for

the NN state estimators of a two-mass drive system.

This paper presents neural estimators of the torsional

torque and the load machine speed for a drive system with

elastic joints. These neural estimators are trained with

classical Levenberg–Marquardt method [7] and next they

are optimized using OBD and Bayesian regularization

methods. The obtained estimators are tested in the open-

loop and closed-loop control structure with additional

feedback adjusted suitably for damping the torsional

vibration of the drive system with elastic coupling between

the driven motor and the load mechanism.

The paper is divided into seven sections. After a short

introduction, the mathematical model of the two-mass

drive system is presented. Then, the speed control struc-

ture with a state controller and feedbacks from the motor

speed, shaft torque, and the load speed are described.

These two last state variables are estimated by the tested

NN, and the motor speed is measured directly as well as

the motor current, which form the input vectors of NN

estimators. In the next part, the discussion of the NN

input vector selection for the analyzed task is presented.

In the forth part, the chosen methods for the improvement

of the NN generalization properties are described. This

paper is focused on two methods: the Bayesian regulari-

zation and the OBD method. The designed NN estimators

are next implemented in the control structure and

tested under simulation (section five) and experimental

tests (section six). The paper is completed with short

conclusions.

2 Design of the state controller for a two-mass drive

system

The electrical drive with anelastic joint can be described by

different mathematical models, depending on the exactness

of the elastic shaft modeling. Usually, such drive is ana-

lyzed as a system composed of two masses connected by an

elastic shaft, where the first mass represents the moment of

inertia of the drive and the second mass refers to the

moment of inertia of the load side (see Fig. 1). It is

assumed that value of the moment of inertia of elastic shaft

Jc is much smaller than the moments of inertia of the

driving motor J1 and the load machine J2. This assumption

involves the neglecting of the moment of inertia of the

elastic shaft.

For the further considerations, the damping coefficient

D of this elastic shaft is assumed as equal to zero, which
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leads to enlarging the influence of elasticity of the shaft on the

drive system operation. Moreover, the nonlinear phenomena,

like friction and backlash, are omitted; thus, the mechanical

part of the considered two-mass drive can be described by

the following state equation, in the per unit system, using the

following notation of new state variables [2]:

T1

dx1ðtÞ
dt

¼ meðtÞ � msðtÞ; ð1Þ

T2

dx2ðtÞ
dt

¼ msðtÞ � mLðtÞ ð2Þ

Tc

dmsðtÞ
dt
¼ x1ðtÞ � x2ðtÞ ð3Þ

with:

x1 ¼
X1

XN

;x2 ¼
X2

XN

;me ¼
Me

MN

;ms ¼
Ms

MN

;mL ¼
ML

MN

ð4Þ

where X1, X2, XN—motor speed, load side speed, and

nominal speed of the motor (rad/s), MN—nominal torque of

the motor (Nm), x1, x2—motor and load speeds, me, ms,

mL—electromagnetic, shaft, and load torques in the per

unit system.

The mechanical time constant of the motor—T1, the

load machine—T2 and the stiffness time constant—Tc are

thus given as:

T1 ¼
XNJ1

MN

; T2 ¼
XNJ2

MN

; TC ¼
MN

KcXN

: ð5Þ

where x1, x2—the motor and load speeds, ms, mL—the

shaft and load torques, T1, T2—the mechanical time con-

stants of the motor and load machine, Tc—the stiffness

time constant.

The block diagram of such system with elastic con-

nection between the motor and the load machine is shown

as the part of Fig. 2 (dashed-line rectangular).

The classical cascade control structure of such drive

system consists of two major control loops: the inner

control loop contains the current controller, the power

converter, and the motor. After optimization, the current

(or torque) control loop can be replaced by the first-order

inertial block with small time constant. During the design

process of the speed loop, the dynamics of the torque

loop is very often neglected [2]. In most cases, the PI

speed controller is used in the external control loop. In

this paper, the state-space controller with an integral

action for steady-state error elimination is applied for the

speed control of the drive system with elasticity (see

Fig. 2).

Taking into account the equation for the required value

of the electromagnetic torque, generated by the motor (with

neglected dynamics of the torque loop and negative feed-

backs from all state variables):

me ¼ Ki

Z
ðxr � x2Þdt � k1x1 � k2ms � k3x2 ð5Þ

Introducing the Laplace transform for the mathematical

model of the drive system (1–3) and (5), we obtain:

T1sx1 ¼ me � ms ð6Þ
T2sx2 ¼ ms � mL ð7Þ
Tcsms ¼ x1 � x2 ð8Þ
me ¼ Rðxr � x2Þ � k1x1 � k2ms � k3x2 ð9Þ

Fig. 1 The schematic diagram of the two-mass system

Fig. 2 A block diagram of the

control structure with a speed

state controller and neural

estimators for two-mass drive
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where

R ¼ Ki

s
: ð10Þ

and s—operator of the Laplace transform.

Including (9) in (6), the following set of equations is

obtained:

T1sx1 þ ms ¼ Rðxr � x2Þ � k1x1 � k2ms � k3x2 ð11Þ
ms ¼ T2sx2 þ mL ð12Þ
Tcsms ¼ x1 � x2 ð13Þ

Introducing (12) in (11) and (13), we obtain:

T1sx1 þ T2sx2 þ mL ¼ Rðxr � x2Þ � k1x1 � k2T2sx2

� k2mL � k3x22 ð14Þ

x1 ¼ TcT2x2s2 þ TcmLsþ x2 ð15Þ

then transforming this set of equations, Eq. (16) is

obtained:

x2 T1T2Tcs3þ T1sþ T2sþRþ k1TcT2s2þ k1þ k2T2sþ k3

� �
¼ Rxr � k1TcsmL� k2mL�mL� T1Tcs2mL;

ð16Þ

which enables the determination of the transfer function of

the closed-loop control system with R replaced by (10):

x2

xr

¼ Ki

s4T1T2Tc þ s3k1TcT2 þ s2ðT1 þ T2 þ k2T2Þ þ sðk1 þ k3Þ þ Ki

ð17Þ

The characteristic equation of this transfer function has the

following form:

HðsÞ ¼ s4 þ s3 k1

T1

þ s2 1

T2Tc

þ 1

T1Tc

þ k2

T1Tc

� �

þ s
k1

T1T2Tc

þ k3

T1T2Tc

� �
þ Ki

T1T2Tc

: ð18Þ

In order to calculate the expressions defining gains of

the designed state controller, the characteristic equation of

the closed-loop system (18) has to be compared to the

reference polynomial of the same order. The following

form of this polynomial was taken into account:

HrefðsÞ ¼ s2 þ 2nrxosþ x2
o

� �
s2 þ 2nrxosþ x2

o

� �
¼ s4 þ s3ð4nrxoÞ þ s2 2x2

o þ 4n2
r x

2
o

� �
þ sð4nrx

3
oÞ

þ x4
o;

ð19Þ

where nr, xo—are the required damping factor and reso-

nance frequency of the closed-loop system.

Comparing the elements with the same power of the

Laplace operator s, the following expressions for the suit-

able gains of the state controller can be obtained:

KI ¼ T1T2Tcx
4
o: ð20Þ

k1 ¼ 4T1frxo; ð21Þ

k2 ¼ T1Tc 2x2
o þ 4f2

r x
2
o �

1

TcT2

� 1

TcT1

� �
; ð22Þ

k3 ¼ x2
ok1T2Tc � k1; ð23Þ

Feedbacks from all mechanical state variables of the

two-mass system are introduced to the external control

loop, so the information about the shaft torque ms, motor

speed x1, and load speed x2 is needed. Measurement of

the motor speed x1 is simple and trouble-free, but the

measurement of the shaft torque and the load speed can

be difficult or expensive in the industrial practice. In

this case, we can use special estimation structures

based on neural networks to estimate these variables,

based on easily measurable driven motor speed and

current (electromagnetic torque of the driven motor is

proportional to this current). So in the control structure,

we will use the measured motor speed x1 and the

estimated variables, like shaft torque mse and load speed

x2e (see Fig. 2).

3 Neural network based state variables estimators

As it was said before, the mechanical state variables

required for feedback signals in the control structure of the

drive system with an elastic joint have been estimated by

NN-based estimators. For this research, the feed-forward

NNs were selected. The previous research shows that this

type of NN can give a high precision of the state variables

estimation of the two-mass drive system [8], but the

selection of proper NN structure is difficult and usually

done by trial and error, which is a time-consuming method.

To avoid this problem, we have selected some structure of

NN (after a few preliminary simulation tests) and next tried

to optimize this structure using two optimization methods,

well known from the neural networks theory.

Starting structures are the same for both presented

estimators—for the load side speed x2e and the shaft tor-

que mse: {6-10-12-1}—6 inputs, 10 neurons in the 1st

hidden layer, 12 neurons in the 2nd hidden layer, and 1

neuron in the output. For the hidden layers, the nonlinear

tangensoidal activation functions are applied. The linear

activation function is selected as the output function of the

considered neural estimators.

The proper selection of elements of the input vector of

neural network is very important for correct realization of

the required task. The selection of input elements in the

design process of neural estimators should take into

account the properties of NNs and practical aspects of the
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analyzed implementation. It should be noticed that the

expansion of the input vector of NN can influence the

structure of the net, in result it influences on its practical

implementation (e.g., using FPGA—for the time of

calculation and consumption of resources). At the same

time, in the case of an expanded input vector, results of

NN calculation can improve slightly, or—on the con-

trary—they can be even worse. From the engineering

point of view, signals included in the NN input vector

should be selected carefully to fulfill the following

conditions:

• give an important information about changes of the

state variables of the process

• they should be easily measured in the real system.

According to these requirements, the input signals of the

neural networks in our case are the motor speed x1 and the

electromagnetic torque me (or stator current) of the driven

motor.

In the presented application of neural estimation,

MLNN (multi-layer neural networks) were implemented. It

should be noted that the NNs analyzed in the described

application are static systems; they do not have internal

feedbacks or memories. On the other hand, the presented

application is focused on dynamical signals of the drive

system, quickly changing in time. Therefore, to take into

account the dynamics of the processed signals and to obtain

better quality of the state variable estimation, the input

vector of MLNN was extended with the delayed samples of

input variables (motor speed and electromagnetic torque).

So the form of the assumed input vector is described by the

following equation:

X ¼ ½x1ðkÞ;x1ðk � 1Þ;x1ðk � 2Þ;meðkÞ;
meðk � 1Þ;meðk � 2Þ� ð24Þ

The number of historical samples was selected experi-

mentally. For the analyzed data, type of NNs and number

of iterations in the training process, the best results were

obtained for input vector described by expression (24).

Tests of estimators without delayed samples of input sig-

nals in the processed vector lead to much worse results. On

the other hand, increasing the number of historical samples

[in comparison with Eq. (24)] only slightly influences the

precision of estimation and is not necessary from the point

of view of practical implementation.

The Levenberg–Marquardt (LM) learning algorithm is

used to train the NN state estimators. The value of each

weight coefficient is adjusted according to LM, while

the error backpropagation (EBP) is used to calculate the

Jacobian matrix of the cost function with respect to the

weight values. The updating rules of NN weights w are

presented below:

Dw ¼ �ðJT Jþ gIÞ�1JT e ð25Þ

where J—Jacobian matrix of the cost function E with

respect to the weight values, g—learning factor, I—iden-

tity matrix, e—difference between target output of the

training data and the network output.

Next, the previously selected structure of NN estimators

was optimized using the Bayesian regularization and

OBD methods. The effectiveness of these methods in the

described task has been compared and evaluated.

4 Optimization methods used for neural estimators

4.1 Bayesian regularization method

The neural networks training process can be defined as a

minimization of the objective function. In the considered

case, the analyzed cost function is described by a following

equation:

F ¼ bED þ aEW ð26Þ

where element ED is a sum of squares of NN calculation

errors for each input sample, and EW is an additional

regularization term presented below:

ED ¼
XM
j¼1

ðdj � yjÞ2; ð27Þ

EW ¼
XW
i¼1

w2
i ; ð28Þ

where dj—desired output values; yj—actual output values

of the neuron; M—dimension of the vector d, wi—

weights; W—the total number of weight and biases in the

network.

In relation to the objective function (26), the problem

of selecting parameters a and b appears. The regulariza-

tion parameters describe the influence of suitable terms ER

and ED on the cost function. The first one decides about

NN exactness in respect to the training data, and the

second one enforces the smoothness of NN output [20,

21]. If a is relatively significant in comparison with b, the

training error is smaller and the effect is like in a classical

algorithm. In the other case, the training process gives

smaller weights and leads to a smoother network output.

Therefore, the optimal values for those factors are extre-

mely important to achieve good estimation quality. In

many cases, these parameters can be chosen using cross-

validation techniques, but this procedure is time consum-

ing. In the Bayesian interpretation of NNs, the optimization

of inter-neural weights corresponds to the increase of

probability:
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PðwjD; a; b;AÞ ¼ PðDjw; b;AÞPðwja;AÞ
PðDja; b;AÞ ð29Þ

where w—weight coefficient vector, D—training data, A—

structure of the neural network, P(D|a,b,A)—normalization

element, P(w|a,A)—describes the information on the

weights’ values before introducing the training data,

P(D|w,b,A)—probability of obtaining the established

response of the NN for suitable inputs, depending on

parameters of the network.

Under the assumption that noise in the input data

(measurements) used in the process of NN training is a

Gaussian and the probability of weight distribution is also a

Gaussian, suitable elements in Eq. (29) are described by the

following formulas:

PðDjw; b;AÞ ¼ 1

ZDðbÞ
expð�bEDÞ ð30Þ

and

Pðwja;AÞ ¼ 1

ZWðaÞ
expð�aEWÞ; ð31Þ

where

ZDðbÞ ¼
p
b

� �M
2

and ZWðaÞ ¼
p
a

� �W
2

; ð32Þ � ð33Þ

thus, we obtain:

PðwjD; a; b;AÞ ¼
1

ZDðbÞ
1

ZRðaÞ expð�ðaEW þ bEDÞÞ
PðDja; b;AÞ ð34Þ

For the optimization of a and b parameters in the objective

function, the following equation is taken into account:

Pða; bjD;AÞ ¼ PðDja; b;AÞPða; bjAÞ
PðDjAÞ : ð35Þ

Under the assumption that distribution of regularization

coefficients a and b is uniform, maximal values of the

probability P(a,b|D,A) are obtained for the biggest values

of the element P(D|a,b,A). Probability P(D|A) is

independent of the required parameters. After suitable

transformations [20, 21], equations describing a and b
parameters for the minimum of the objective function are

obtained:

a ¼ c
2EWðwMPÞ

ð36Þ

and

b ¼ M � c
2EDðwMPÞ

; ð37Þ

where

c ¼ W � 2a traceðHÞ�1: ð38Þ

and wMP—minimum point of the objective function, H—

hessian matrix of the cost function.

The parameter c means an effective number of param-

eters of the NN; however, W is a number of all parameters

in the NN.

4.2 Optimal Brain Damage method

The neural networks training leads to the minimization of

the cost function defined as a mean square error between

estimated and real value.

The cost function, for p-elements learning vector, is

described in the following way:

E ¼ 1

2

Xp

j¼1

XM

i¼1

ðdiðjÞ � yiðjÞÞ2: ð39Þ

Differentiability and continuity of the cost function (39)

make possible to use the gradient methods for its

minimization. The first step in this method is an expansion

of the cost function into Taylor series around the actual

solution:

DE ¼
X

i

giDwi þ
1

2

X
i

hii½Dwii�2 þ
X
i 6¼j

hijDwiDwj

" #

þ O Dwk k3
� �

ð40Þ

where Dwi-changes of i-th weight;

gi ¼
oE

owi

; ð41Þ

hij ¼
o2E

owiowj

: ð42Þ

In the OBD algorithm, the weight coefficients are

eliminated after full training of the net, so we can assume

that elements related to the gradient are equal zero and skip

them in Eq. (40). The hessian matrix is diagonally

dominant, which makes it possible to include only

diagonal elements hii of this matrix in the presented

algorithm. The quadratic approximation assumes that the

cost function is quadratic, so the third element in the Eq.

(40) can be neglected. Following the above assumptions,

the saliency coefficient is described by the following

relation [15]:

Si ¼ DE ¼ 1

2

X
i

hii½Dwii�2 ð43Þ

These coefficients give the information about influence

of the respective connections in NN on the training process.

The weights with the smallest saliency parameter are

eliminated. The algorithm of OBD method is thus

presented as follows:
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1. Choice of reasonable topology of neural network.

2. Full training of the net.

3. Computing diagonal elements of the hii.

4. Evaluation of the saliency parameters Si for every

weights coefficients.

5. Deleting the elements with the smallest saliency.

6. If weights connections were deleted, go back to the

second point with reduced topology of neural network.

5 Simulation results

The NN estimators are tested in the control structure pre-

sented in Fig. 2. The main parameters of the drive system

are as follows: T1 = T2 = 203 ms and Tc = 2.6 ms. The

assumed values of resonant frequency and the damping

factor of the speed closed loop of the drive system are,

respectively: xo = 45 s-1 and nr = 0.7. For disturbance

reduction, which are caused by high dynamics of inputs

signals and measurement noise, the low-pass filters are

used with time constant T = 5 ms.

The first results are presented for NNs trained with the

Levenberg–Marquardt algorithm, without any additional

techniques. The neural estimators are tested first in the

open control loop, which means that control structure of

the two-mass system is based on state variables obtained

directly from the drive mathematical model, and signals

estimated by the designed NNs are not used in this struc-

ture. The obtained results are shown in Fig. 3.

In order to evaluate the quality of estimation of the load

machine speed x2e and shaft torque mse, the estimation

errors of NNs are calculated, using the following formula:

Err ¼
Pn

i¼1 xi � x̂ij j
N

� 100 ð44Þ

where xi—real value, x̂i—estimated value, N—number of

samples.

The estimation errors (average error per sample) cal-

culated for transients presented in Fig. 3, are, respectively,

5.77 for the load speed and 0.63 for the shaft torque.

Next, the estimated signals were introduced into the

control structure and obtained results are demonstrated in

Fig. 4. As can be seen from those transients, neural esti-

mators prepared using the Leveneberg–Marquardt algo-

rithm and next tested in the closed control loop failed.

The NNs are not considered during the designing pro-

cess of the control structure. The coefficient values (20–23)

in the suitable feedback loops are calculated with the

assumption that we have the exact knowledge of feedback

signals, so in the case of estimated variables, these ‘‘ideal’’

coefficients intensify dynamical estimation errors and thus

Fig. 3 Transients of the real

and estimated load speed x2

(a) and torsional torque ms

(b) and their estimation errors

obtained for NN trained with

LM algorithm and tested in an

open loop

Fig. 4 Transients of the real

and estimated load speed x2

(a) and torsional torque ms (b),

and their estimation errors

obtained from NNs trained with

LM algorithm and tested in the

closed-loop system
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quite significant interferences appear. Oscillations of state

variables are excited in the closed-loop structure, so the

proper control is impossible. These phenomena may cause

damages of coupling elements between the motor and load

machine. So the high quality of state variables estimation is

necessary for the correct operation of the closed-loop drive

system. Thus, the optimization methods for NNs are

introduced.

First, the application of Bayesian regularization in

neural estimators is tested, and operation of the obtained

NNs implemented in the closed-loop system is presented in

Fig. 5, also in the case of changeable load side time con-

stant T2.

The obtained results are very good, and the usage of

the modified cost function (26–28) during the training

procedure of NN can eliminate too big weight coeffi-

cients of the designed neural estimators and thus prevent

oscillations appearing previously in the closed-loop

operation. The correct operation of the designed estima-

tors in the closed control loop can be assured even for

changeable values of the load mechanism time constant

T2 (Fig. 5c–f).

However, the best quality of the state estimation is

achieved for NN structures optimized with the OBD

method. The obtained results of closed-loop operation are

demonstrated in Fig. 6.

Fig. 5 Transients of the real

and estimated load speed x2 (a,

c, e) and torsional torque ms (b,

d, f) and their estimation errors

obtained from NN trained with

LM algorithm and the Bayesian

regularization, and tested in the

closed loop for different values

of T2 time constant
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Neural estimators optimized with this method can cal-

culate precisely the suitable state variables of the two-mass

drive system even in the presence of T2 changes. It is

important that changes of the time constant of the load

machine are not taken into account during the training

process in both tested cases. The neural estimators have the

initial structure containing 215 synaptic coefficients. After

OBD method applied for the shaft torque estimator, 80

synaptic connections are deleted and for the load speed

estimator, 140 connections are eliminated, respectively.

The decision about stopping the optimization process is

based on the analysis of the estimation error. The examples

of the Hinton diagrams for the load speed estimators

are presented in Fig. 7. The Hinton diagrams visualize

matrices of bias and weights values. Each value is repre-

sented by a rectangle, which size is associated with the

weight magnitude, and each color indicates the sign

(a positive—red, a negative—green). The OBD algorithm

eliminates individual inter-neural connections; however,

there are neurons completely eliminated after this optimi-

zation process (Fig. 7d, e).

In the Table 1, the comparison of the estimation errors,

calculated according to (44) for both tested methods, is shown.

Both described methods enable the preparation of neural

estimators which give the correct results after implementation

in the closed-loop structure of the two-mass drive system.

The OBD method can give better results, but for this

method, higher computational power is required and the

Fig. 6 Transients of the real

and estimated load speed x2 (a,

c, e) and torsional torque ms (b,

d, f) and their estimation errors

obtained from NNs trained error

with LM algorithm and the

OBD method, tested in closed

loop for different values of T2

time constant
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training process is much slower than for the Bayesian

regularization method. The pruning methods are also

important when the hardware implementation of the

neural estimators is considered. It is possible to reduce

the structure of the NN which leads to the simplifica-

tion of the realization algorithm and in result to save

the hardware resources (e.g., in the case of FPGA

implementation).

6 Experimental results

The tested drive system with an elastic joint is emulated

with two DC machines (0.5 kW each) connected by an

elastic shaft (a steel shaft of 5 mm diameter and 600 mm

length). The stiffness of the connection depends on the

shaft diameter. The motor is fed by a power converter. The

control algorithm and neural state estimators are imple-

mented in DSP placed in the dSPACE 1102 card. The load

machine in the drive system is also controlled using the

DSP (see Fig. 8). Basic parameters of the drive system are

presented in the Table 2.

Fig. 7 Hinton diagrams for the load speed estimator illustrating weight values between input and first hidden layer (a, d), between two hidden

layers (b, e) and between second hidden and output layers (c, f) before OBD method (a–c) and after weight elimination (d–f)

Table 1 Errors for neural estimators tested in the closed loop for

changes of the T2 time constant

Method T2 time constant

T2 = T2N T2 = 0.5T2N T2 = 2T2N

Estimator ms

Bayesian regularization 4.60 5.05 5.05

OBD 0.05 0.05 0.11

Estimator x2

Bayesian regularization 2.16 2.44 2.19

OBD 1.28 1.28 2.12

Fig. 8 Schematic diagram of the experimental setup, where 1—

motor machine, 2—load machine, 3,4—encoders, 5—shaft, 6—

resistor, 7—rectifier, 8—control structure, 9—power converter

1336 Neural Comput & Applic (2014) 24:1327–1340

123



The speeds of both DC machines are measured by

incremental encoders (36 000 pulses per rotation); how-

ever, the measurement of the loading machine is used

only for comparison with the estimated value. In the

laboratory setup the LEM sensors for current measure-

ments are implemented. There is no shaft torque sensor in

the laboratory setup. Therefore, in order to check the

estimated shaft torque shape, the Kalman filter is applied

[4, 22]. In Fig. 9, pictures of the laboratory test bench are

presented.

Exemplary transients of the state estimation in the

closed-loop drive structure, obtained before and after NNs

optimization, are presented in the Fig. 10.

The tests are realized for the reference speed that

equals 20 % of its nominal value; after one second, the

reverse operation of the drive system is forced. In the

period t [ (0.5–1.5)s, the nominal load torque is applied.

Next, this load is taken off. Similarly to the simulation,

neural estimators trained with Levenberg–Marquardt

algorithm are generating noises and instability of the

closed-loop drive system operation (Fig. 10a, b). After

optimization with the described algorithms, both esti-

mators work properly. The estimation errors (44) for both

optimization algorithms are similar in the case of

experimental tests: for the NN optimized with Bayesian

regularization, the load speed error is 0.37 and the tor-

sional torque error is 2.77. The inaccuracy of the load

speed and torsional torque reconstruction for neural

estimator designed with the OBD method are, respec-

tively, 0.49 and 2.99. Additional tests for twice bigger T2

time constant were conducted. The results are presented

in the Fig. 11.

As in simulation tests, the changes of the two-mass

system parameter are not taken into account during neural

estimator training, also coefficients in the control struc-

ture are calculated for nominal value of T2. Estimation

error of the load speed is equal 0.67 in the case of the

Bayesian regularization method and 0.83 for the OBD

method. Torsional torque reconstruction using neural

estimators optimized with Bayesian regularization

method presents error equal to 2.76 and after implemen-

tation of the OBD method is 2.95. Comparing changes of

the errors for different values of T2 in the drive system

similar values can be observed. The conclusion is that

obtained neural estimators are robust against changes of

the tested drive parameter.

7 Conclusion

Application of neural estimators in the drive system with

elastic coupling enables very good estimation quality.

Neural estimators do not require the knowledge of math-

ematical model parameters on the contrary to the algo-

rithmic methods of state variable estimation. Disturbances

from the estimated signals connected as additional feed-

backs in the two-mass drive control structure can lead to

the speed oscillation or even problems with system insta-

bility. So the good quality of the estimation is very

important. After the implementation of Bayesian regulari-

zation or OBD, the obtained precision of calculations in

NN is much better. Presented estimators are also robust to

changes of the mechanical parameters of the drive, like the

load side time constant T2. The OBD method can give

slightly better results, but it should be noticed that for this

method higher computational power is required and the

training process is much slower than for the Bayesian

regularization method. Thus, this last method can be rec-

ommended for practical implementation. Correct work of

the designed estimators was confirmed not only by

Table 2 Parameters of the two-mass system

Parameter Value Unit

Power 500 W

Nominal motor voltage 220 V

Nominal speed 1,450 rev/min

Motor mechanical time constant 0.203 s

Load mechanical time constant 0.203 s

Shaft length 600 mm

Shaft diameter 6 mm

Stiffness time constant 0.0026 s

Fig. 9 Laboratory test bench
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Fig. 10 Experimental

transients (closed-loop

operation for nominal T2 value)

of the real and estimated load

speed x2 (a, c, e) and torsional

torque ms (b, d, f) and their

estimation errors obtained for

NN trained with LM algorithm

(a, b), and after the Bayesian

regularization (c, d), and the

OBD method (e, f)
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simulations but also by experiments in the real drive sys-

tem in the laboratory.
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