Skip to main content
Log in

Dynamic selection approaches for multiple classifier systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper we propose a new approach for dynamic selection of ensembles of classifiers. Based on the concept named multistage organizations, the main objective of which is to define a multi-layer fusion function adapted to each recognition problem, we propose dynamic multistage organization (DMO), which defines the best multistage structure for each test sample. By extending Dos Santos et al.’s approach, we propose two implementations for DMO, namely DSAm and DSAc. While the former considers a set of dynamic selection functions to generalize a DMO structure, the latter considers contextual information, represented by the output profiles computed from the validation dataset, to conduct this task. The experimental evaluation, considering both small and large datasets, demonstrated that DSAc dominated DSAm on most problems, showing that the use of contextual information can reach better performance than other existing methods. In addition, the performance of DSAc can also be enhanced in incremental learning. However, the most important observation, supported by additional experiments, is that dynamic selection is generally preferred over static approaches when the recognition problem presents a high level of uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorization. Inf Fusion 6(1):5–20

    Article  Google Scholar 

  2. Dos Santos EM, Sabourin R, Maupin P (2006) Single and multi-objective genetic algorithms for the selection of ensemble of classifiers. In: Proceedings of international joint conference on neural networks, 2006, Vancouver, Canada, pp 3070–3077

  3. Shipp CA, Kuncheva LI (2002) Relationships between combination methods and measures of diversity in combining classifiers. Inf Fusion 3(2):1351–48

    Article  Google Scholar 

  4. Kuncheva LI, Whitaker CJ, Shipp C, Duin R (2003) Limits on the majority vote accuracy in classifier fusion. Pattern Anal Appl 6(1):22–31

    Article  MathSciNet  MATH  Google Scholar 

  5. Ruta D, Gabrys B (2002) A theoretical analysis of the limits of majority voting errors for multiple classifier systems. Pattern Anal Appl 5:333–350

    Article  MathSciNet  Google Scholar 

  6. Ruta D, Gabrys B (2005) Classifier selection for majority voting. Inf Fusion 1:63–81

    Article  Google Scholar 

  7. Dos Santos EM, Sabourin R, Maupin P (2008) A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit 41:2993–3009

    Article  MATH  Google Scholar 

  8. Woods K, Kegelmeyer JWP, Bowyer K (1997) Combination of multiple classifiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19(4):405–410

    Google Scholar 

  9. Giacinto G, Roli F (2001) Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognit 34:1879–1881

    Article  MATH  Google Scholar 

  10. Zhu X, Wu X, Yang Y (2004) Dynamic classifier selection for effective mining from noisy data streams. In: Proceedings of the 4th IEEE international conference on data mining, IEEE Computer Society, Washington, DC, USA, 2004, pp 305–312

  11. Soares RGF, Santana A, Canuto AMP, de Souto MCP (2006) Using accuracy and diversity to select classifiers to build ensembles. In: Proceedings of the 2006 international joint conference on neural networks, Vancouver, Canada, 2006, pp 1310–1316

  12. Ko AH, Sabourin R, Britto J (2008) From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit 41(5):1718–1731

    Article  MATH  Google Scholar 

  13. Kuncheva LI (2000) Cluster-and-selection model for classifier combination. In: Proceedings of international conference on knowledge based intelligent engineering systems and allied technologies, Brighton, UK, 2000, pp 185–188

  14. Singh S, Singh M (2005) A dynamic classifier selection and combination approach to image region labelling. Signal Process Image Commun 20(3):219–231

    Article  Google Scholar 

  15. Hansen LK, Liisberg C, Salamon P (1997) The error-reject tradeoff. Open Syst Inf Dyn 4(2):159–184

    Article  MATH  Google Scholar 

  16. Kuncheva LI, Bezder JC, Duin RPW (2001) Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognit 34:299–314

    Article  MATH  Google Scholar 

  17. Serpico SB, Bruzzone L, Roli F (1996) An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images. Pattern Recognit Lett 17(3):1331–1341

    Article  Google Scholar 

  18. Park Y, Sklansky J (1990) Automated design of linear tree classifiers. Pattern Recognit 23(12):1393–1412

    Article  Google Scholar 

  19. Oliveira LES, Sabourin R, Bortolozzi F, Suen CY (2002) Automatic recognition of handwritten numeral strings: a recognition and verification strategy. IEEE Trans Pattern Anal Mach Intell 24(11):1438–1454

    Article  Google Scholar 

  20. Ho T (1998) The random subspace method for construction decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–844

    Article  Google Scholar 

  21. Rheaume F, Jousselme A-L, Grenier D, Bosse E, Valin P (2002) New initial basic probability assignments for multiple classifiers. In: Kadar I (eds) Society of photo-optical instrumentation engineers (SPIE) conference series, vol 4729, pp 319–328

  22. Milgram J, Cheriet M, Sabourin R (2006) One against one” or “One against all”: which one is better for handwriting recognition with SVMs? In: Proceedings of 10th international workshop on frontiers in handwriting recognition, La Baule, France, 2006

  23. Radtke P (2006) Classification systems optimization with multi-objective evolutionary algorithms, Ph.D. thesis, École de Technologie Supérieure (ETS), Montreal, Canada

  24. Milgram J (2007) Contribution à l’intégration des machines à vecteurs de support au sein de systèmes de reconnaissance de formes: application à la lecture automatique de l’écriture manuscrite (in french), Ph.D. thesis, École de Technologie Supérieure

  25. Cui B, Ooi BC, Su J, Tan K-L (2003) Contorting high dimensional data for efficient main memory knn processing. In: Proceedings of the 2003 ACM SIGMOD international conference on management of data, San Diego, USA, 2003, pp 479–490

Download references

Acknowledgments

The authors would like to acknowledge the CAPES-Brazil and NSERC-Canada for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. Cavalin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalin, P.R., Sabourin, R. & Suen, C.Y. Dynamic selection approaches for multiple classifier systems. Neural Comput & Applic 22, 673–688 (2013). https://doi.org/10.1007/s00521-011-0737-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0737-9

Keywords

Navigation