Skip to main content

Advertisement

Log in

Optimal job scheduling in grid computing using efficient binary artificial bee colony optimization

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The artificial bee colony has the advantage of employing fewer control parameters compared with other population-based optimization algorithms. In this paper a binary artificial bee colony (BABC) algorithm is developed for binary integer job scheduling problems in grid computing. We further propose an efficient binary artificial bee colony extension of BABC that incorporates a flexible ranking strategy (FRS) to improve the balance between exploration and exploitation. The FRS is introduced to generate and use new solutions for diversified search in early generations and to speed up convergence in latter generations. Two variants are introduced to minimize the makepsan. In the first a fixed number of best solutions is employed with the FRS while in the second the number of the best solutions is reduced with each new generation. Simulation results for benchmark job scheduling problems show that the performance of our proposed methods is better than those alternatives such as genetic algorithms, simulated annealing and particle swarm optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham A, Buyya R, Nath B (2000) Nature’s heuristics for scheduling jobs on computational grids. In: The 8th IEEE international conference on advanced computing and communications (ADCOM 2000), pp 45–52

  • Abraham A, Liu H, Zhao M (2008) Particle swarm scheduling for work-flow applications in distributed computing environments. Metaheuristics for scheduling in industrial and manufacturing applications. Stud Comput Intell 128:327–342

    Article  Google Scholar 

  • Abraham A, Jatoth R, Rajasekhar A (2012) Hybrid differential artificial bee colony algorithm. J Comput Theor Nanosci 9(2):249–257

    Article  Google Scholar 

  • Alzaqebah M, Abdullah S (2011) Comparison on the selection strategies in the artificial bee colony algorithm for examination timetabling problems. Int J Soft Comput Eng 1:158–163

    Google Scholar 

  • Banks A, Vincent J, Phalp K (2009) Natural strategies for search. Nat Comput 8(3):547–570

    Article  MathSciNet  MATH  Google Scholar 

  • Bao L, Zeng J (2009) Comparison and analysis of the selection mechanism in the artificial bee colony algorithm. In: Ninth international conference on hybrid intelligent systems, 2009, HIS’09, vol 1. IEEE, pp 411–416

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Braun T, Siegel H, Beck N, Boloni L, Maheswaran M, Reuther A, Robertson J, Theys M, Yao B (2001) A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J Parallel Distrib Comput 61(6):810–837

    Article  Google Scholar 

  • Brucker P (2007) Scheduling algorithms. Springer, Berlin

  • Brucker P, Schlie R (1990) Job-shop scheduling with multi-purpose machines. Comput Lett 45(4):369–375

    Article  MathSciNet  MATH  Google Scholar 

  • Chandrasekaran K, Hemamalini S, Simon S, Padhy N (2012) Thermal unit commitment using binary/real coded artificial bee colony algorithm. Electric Power Syst Res 84(1):109–119

    Article  Google Scholar 

  • Chung K, Erdös P (1952) On the application of the Borel-Cantelli lemma. Trans Am Math Soc 72:179–186

    Article  MATH  Google Scholar 

  • Chung W, Chang R (2009) A new mechanism for resource monitoring in grid computing. Future Gen Comput Syst 25(1):1–7

    Article  Google Scholar 

  • Clerc M (2006) Particle swarm optimization. Wiley-ISTE

  • Cuevas E, Sención-Echauri F, Zaldivar D, Pérez-Cisneros M (2012) Multi-circle detection on images using artificial bee colony (abc) optimization. Soft Comput 16(2):1–16

    Article  Google Scholar 

  • Davidovic T, Selmic M, Teodorovic D (2009) Scheduling independent tasks: bee colony optimization approach. In: 17th Mediterranean conference on control and automation, 2009, MED’09. IEEE, pp 1020–1025

  • Davis R, Burns A (2011) A survey of hard real-time scheduling for multiprocessor systems. ACM Comput Surveys 43(4):35

    Article  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  • Di Martino V, Mililotti M (2004) Sub optimal scheduling in a grid using genetic algorithms. Parallel Comput 30(5-6):553–565

    Article  Google Scholar 

  • Dong F Akl S (2006) Scheduling algorithms for grid computing: state of the art and open problems. Technical report, School of Computing, Queen’s University, Kingston, Ontario

  • Forestiero A, Mastroianni C, Spezzano G (2008) So-grid: a self-organizing grid featuring bio-inspired algorithms. ACM Trans Auton Adapt Syst 3(2):1–37

    Article  Google Scholar 

  • Foster I, Kesselman C (2004) The grid: blueprint for a new computing infrastructure. Morgan Kaufmann

  • Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree compared. In: Grid computing environments workshop, 2008, GCE’08. IEEE, pp 1–10

  • Fujita S, Yamashita M (2000) Approximation algorithms for multiprocessor scheduling problem. IEICE Trans Inf Syst 83(3):503–509

    Google Scholar 

  • Gao Y, Rong H, Huang J (2005) Adaptive grid job scheduling with genetic algorithms. Future Gen Comput Syst 21(1):151–161

    Article  Google Scholar 

  • García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: a case study on the cecn2005 special session on real parameter optimization. J Heuristics 15(6):617–644

    Article  MATH  Google Scholar 

  • Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness. WH Freeman & Co

  • Guo C, Tang H (2001) Global convergence properties of evolution stragtegies. Math Numer Sin 23(1):105–110

    Article  MathSciNet  Google Scholar 

  • Han L, Berry D (2008) Semantic-supported and agent-based decentralized grid resource discovery. Future Gen Comput Syst 24(8):806–812

    Article  Google Scholar 

  • He R, Wang Y, Wang Q, Zhou J, Hu C (2005) Improved particle swarm optimization based on self-adaptive escape velocity. Chin J Softw 16(12):2036–2044

    Article  MATH  Google Scholar 

  • Hou E, Ansari N, Ren H (1994) A genetic algorithm for multiprocessor scheduling. IEEE Trans Parallel Distrib Syst 5(2):113–120

    Google Scholar 

  • Izakian H, Ladani B, Abraham A, Snášel V (2010) A discrete particle swarm optimization approach for grid job scheduling. Int J Innov Comput Inf Control 6:1–15

    Google Scholar 

  • Jansen K, Mastrolilli M, Solis-Oba R (2000) Approximation algorithms for flexible job shop problems. In: Lecture notes in computer science. LATIN 2000: theoretical informatics, vol 1776, pp 68–77

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2008) On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  • Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Springer, Germany

    Google Scholar 

  • Kruskal W, Wallis W (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  MATH  Google Scholar 

  • Laalaoui Y, Drias H (2010) Aco approach with learning for preemptive scheduling of real-time tasks. Int J Bio-Inspired Comput 2(6):383–394

    Article  Google Scholar 

  • Lahoz-Beltra R, Perales-Gravan C (2010) A survey of nonparametric tests for the statistical analysis of evolutionary computational experiments. Int J Inf Theor Appl 17(1):41–61

    Google Scholar 

  • Lee W, Cai W (2011) A novel artificial bee colony algorithm with diversity strategy. In: 2011 Seventh international conference on natural computation (ICNC), vol 3. IEEE, pp 1441–1444

  • Li J, Pan Q, Xie S, Wang S (2011) A hybrid artificial bee colony algorithm for flexible job shop scheduling problems. Int J Comput Commun Control 6(2):286–296

    Google Scholar 

  • Li G, Niu P, Xiao X (2012) Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl Soft Comput 12(1):320–332

    Article  Google Scholar 

  • Liu H, Abraham A, Clerc M (2007) Chaotic dynamic characteristics in swarm intelligence. Appl Soft Comput 7(3):1019–1026

    Article  Google Scholar 

  • Liu H, Abraham A, Wang Z (2009) A multi-swarm approach to multi-objective flexible job-shop scheduling problems. Fundam Inf 95(4):465–489

    MathSciNet  Google Scholar 

  • Liu H, Abraham A, Hassanien A (2010) Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm. Future Gen Comput Syst 26(8):1336–1343

    Article  Google Scholar 

  • Ma M, Liang J, Guo M, Fan Y, Yin Y (2011) Sar image segmentation based on artificial bee colony algorithm. Appl Soft Comput 11(8):5205–5214

    Article  Google Scholar 

  • Mann H, Whitney D (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    Article  MathSciNet  MATH  Google Scholar 

  • Mastrolilli M, Gambardella L (1999) Effective neighborhood functions for the flexible job shop problem. J Sched 3(1):3–20

    Article  MathSciNet  Google Scholar 

  • Mezura-Montes E, Velez-Koeppel R (2010) Elitist artificial bee colony for constrained real-parameter optimization. In: 2010 IEEE Congress on evolutionary computation (CEC). IEEE, pp 1–8

  • Nemeth Z, Sunderam V (2003) Characterizing grids: attributes, definitions, and formalisms. J Grid Comput 1(1):9–23

    Article  Google Scholar 

  • Pampara G, Engelbrecht A (2011) Binary artificial bee colony optimization. In: Proceedings of 2011 IEEE symposium on swarm intelligence (SIS). IEEE, pp 1–8

  • Pan Q, Fatih Tasgetiren M, Suganthan P, Chua T (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf Sci 181(12):2455–2468

    Article  Google Scholar 

  • Pinedo M (2012) Scheduling: theory, algorithms, and systems. Springer, Berlin

  • Ritchie G, Levine J (2003) A fast, effective local search for scheduling independent jobs in heterogeneous computing environments. Technical report, Centre for Intelligent Systems and their Applications, University of Edinburgh

  • Ritchie G, Levine J (2004) A hybrid ant algorithm for scheduling independent jobs in heterogeneous computing environments. In: Proceedings of 23rd workshop of the UK Planning and Scheduling Special Interest Group, PLANSIG 2004

  • Sharma T, Pant M (2011) Enhancing the food locations in an artificial bee colony algorithm. In: 2011 IEEE symposium on swarm intelligence (SIS). IEEE, pp 1–5

  • Singh A, Sundar S (2011) An artificial bee colony algorithm for the minimum routing cost spanning tree problem. Soft Comput 15(12):1–11

    Article  Google Scholar 

  • Su M, Su S, Zhao Y (2009) A swarm-inspired projection algorithm. Pattern Recogn Lett 42(11):2764–2786

    Article  MathSciNet  MATH  Google Scholar 

  • Thesen A (1998) Design and evaluation of tabu search algorithms for multiprocessor scheduling. J Heuristics 4(2):141–160

    Article  MATH  Google Scholar 

  • Vivekanandan K, Ramyachitra D, Anbu B (2011) Artificial bee colony algorithm for grid scheduling. J Converg Inf Technol 6:328–339

    Google Scholar 

  • Walker R (2007) Purposive behavior of honeybees as the basis of an experimental search engine. Soft Comput 11(8):697–716

    Article  Google Scholar 

  • Wei Y, Blake M (2010) Service-oriented computing and cloud computing: challenges and opportunities. IEEE Internet Comput 14(6):72–75

    Article  Google Scholar 

  • Wong L, Puan C, Low M, Wong Y (2010) Bee colony optimisation algorithm with big valley landscape exploitation for job shop scheduling problems. Int J Bio-Inspired Comput 2(2):85–99

    Article  Google Scholar 

  • Wu A, Yu H, Jin S, Lin K, Schiavone G (2004) An incremental genetic algorithm approach to multiprocessor scheduling. IEEE Trans Parallel Distrib Syst 15(9):824–834

    Article  Google Scholar 

  • Xhafa F, Carretero J, Abraham A (2007) Genetic algorithm based schedulers for grid computing systems. Int J Innov Comput Inf Control 3(5):1–19

    Google Scholar 

  • Xiao R, Chen W, Chen T (2012) Modeling of ant colony’s labor division for the multi-project scheduling problem and its solution by pso. J Comput Theor Nanosci 9(2):223–232

    Google Scholar 

  • Yang X (2011) Nature-inspired metaheuristic algorithms. Luniver Press

  • Yue B, Liu H, Abraham A (2012) Dynamic trajectory and convergence analysis of swarm algorithm. Comput Inf 31(2):371–392

    MathSciNet  Google Scholar 

  • Ziarati K, Akbari R, Zeighami V (2011) On the performance of bee algorithms for resource-constrained project scheduling problem. Appl Soft Comput 11:3720–3733

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Zhihua Cui for his scientific collaboration in this research work. This work is supported partly by the Kangwon National University, the National Natural Science Foundation of China (Grant No. 61173035, 61105117), the Fundamental Research Funds for the Central Universities (Grant No. 2012TD027), the Program for New Century Excellent Talents in University (Grant No. NCET-11-0861), and the Dalian Science and Technology Fund (Grant No. 2010J21DW006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Liu.

Additional information

Communicated by F. Herrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SS., Byeon, JH., Liu, H. et al. Optimal job scheduling in grid computing using efficient binary artificial bee colony optimization. Soft Comput 17, 867–882 (2013). https://doi.org/10.1007/s00500-012-0957-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0957-7

Keywords

Navigation