Skip to main content
Log in

On the Controllability of Anomalous Diffusions Generated by the Fractional Laplacian

  • Original Article
  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

This paper introduces a “spectral observability condition” for a negative self-adjoint operator which is the key to proving the null-controllability of the semigroup that it generates, and to estimating the controllability cost over short times. It applies to the interior controllability of diffusions generated by powers greater than 1/2 of the Dirichlet Laplacian on manifolds, generalizing the heat flow. The critical fractional order 1/2 is optimal for a similar boundary controllability problem in dimension one. This is deduced from a subsidiary result of this paper, which draws consequences on the lack of controllability of some one-dimensional output systems from Müntz–Szász theorem on the closed span of sets of power functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum D (2004) Lévy processes – from probability to finance and quantum groups. Notices Amer Math Soc 51(11):1336–1347

    MATH  MathSciNet  Google Scholar 

  2. Avdonin SA, Ivanov SA (1995) Families of exponentials, the method of moments in controllability problems for distributed parameter systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Borwein P, Erdélyi T (1996) The full Müntz theorem in C[0, 1] and L 1 [0, 1]. J London Math Soc (2) 54(1):102–110

    MATH  MathSciNet  Google Scholar 

  4. Dolecki S, Russell DL (1977) A general theory of observation and control. SIAM J Control Optim 15(2):185–220

    Article  MATH  MathSciNet  Google Scholar 

  5. Fattorini HO (1966) Control in finite time of differential equations in Banach space. Comm Pure Appl Math 19:17–34

    Article  MATH  MathSciNet  Google Scholar 

  6. Fattorini HO, Russell DL (1971) Exact controllability theorems for linear parabolic equations in one space dimension. Arch Ration Mech Anal 43:272–292

    Article  MATH  MathSciNet  Google Scholar 

  7. Fernández-Cara E, Zuazua E (2000) The cost of approximate controllability for heat equations: the linear case. Adv Differential Equations 5(4–6):465–514

    MATH  MathSciNet  Google Scholar 

  8. Gorenflo R, Mainardi F (2003) Fractional diffusion processes: probability distributions and continuous time random walk. Processes with long range correlations. In: Rangarajan G, Ding M (eds). lecture notes in physics, vol 621 pp 148–166

  9. Hanyga A (2001) Multidimensional solutions of space-fractional diffusion equations. R Soc Lond Proc Ser A Math Phys Eng Sci 457(2016):2993–3005

    Article  MATH  MathSciNet  Google Scholar 

  10. Jacob B, Partington JR (2006) On controllability of diagonal systems with one-dimensional input space. Systems Control Lett 55(4):321–328

    Article  MATH  MathSciNet  Google Scholar 

  11. Jacob B, Zwart H (2001) Exact observability of diagonal systems with a finite-dimensional output operator. Systems Control Lett 43(2):101–109

    Article  MATH  MathSciNet  Google Scholar 

  12. Jerison D, Lebeau G (1996) Nodal sets of sums of eigenfunctions. Harmonic analysis and partial differential equations (Chicago, IL, 1996). University of Chicago Press, Chicago, pp 223–239

  13. Lebeau G, Robbiano L (1995) Contrôle exact de l’équation de la chaleur. Comm Partial Differential Equations 20(1–2):335–356

    Article  MATH  MathSciNet  Google Scholar 

  14. Lebeau G, Zuazua E (1998) Null-controllability of a system of linear thermoelasticity. Arch Ration Mech Anal 141(4):297–329

    Article  MATH  MathSciNet  Google Scholar 

  15. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A 37(31): R161–R208

    Article  MATH  MathSciNet  Google Scholar 

  16. Micu S, Zuazua E (2006) On the controllability of a fractional order parabolic equation. SIAM J Control Optim. 44(6):1950–1972

    Article  MATH  MathSciNet  Google Scholar 

  17. Miller L (2004) Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J Differential Equations 204(1):202–226

    MATH  MathSciNet  Google Scholar 

  18. Miller L (2005) Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds. Math Res Lett 12(1):37–47

    MATH  MathSciNet  Google Scholar 

  19. Rebarber R, Weiss G (2000) Necessary conditions for exact controllability with a finite-dimensional input space. Systems Control Lett 40(3):217–227

    Article  MATH  MathSciNet  Google Scholar 

  20. Redheffer RM (1977) Completeness of sets of complex exponentials. Adv Math 24(1):1–62

    Article  MATH  MathSciNet  Google Scholar 

  21. Sato K (1999) Lévy processes and infinitely divisible distributions. Cambridge studies in advanced mathematics, vol 68. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Seidman TI (1998) How violent are fast controls?. Math Control Signals Systems 1(1):89–95

    Article  MathSciNet  Google Scholar 

  23. Sokolov I, Klafter J, Blumen A (2002) Fractional kinetics. Physics Today 55:48–54

    Article  Google Scholar 

  24. Song R, Vondraček Z (2003) Potential theory of subordinate killed Brownian motion in a domain. Probab Theory Related Fields 125(4):578–592

    Article  MATH  MathSciNet  Google Scholar 

  25. Weiss G (1989) Admissible observation operators for linear semigroups. Israel J Math 65(1):17–43

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, L. On the Controllability of Anomalous Diffusions Generated by the Fractional Laplacian. Math. Control Signals Syst. 18, 260–271 (2006). https://doi.org/10.1007/s00498-006-0003-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-006-0003-3

Keywords

Navigation