Skip to main content

Advertisement

Log in

Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Optimum climate conditions for grapevine growth are limited geographically and may be further challenged by a changing climate. Due to the importance of the winemaking sector in Europe, the assessment of future scenarios for European viticulture is of foremost relevance. A 16-member ensemble of model transient experiments (generated by the ENSEMBLES project) under a greenhouse gas emission scenario and for two future periods (2011–2040 and 2041–2070) is used in assessing climate change projections for six viticultural zoning indices. After model data calibration/validation using an observational gridded daily dataset, changes in their ensemble means and inter-annual variability are discussed, also taking into account the model uncertainties. Over southern Europe, the projected warming combined with severe dryness in the growing season is expected to have detrimental impacts on the grapevine development and wine quality, requiring measures to cope with heat and water stress. Furthermore, the expected warming and the maintenance of moderately wet growing seasons over most of the central European winemaking regions may require a selection of new grapevine varieties, as well as an enhancement of pest/disease control. New winemaking regions may arise over northern Europe and high altitude areas, when considering climatic factors only. An enhanced inter-annual variability is also projected over most of Europe. All these future changes pose new challenges for the European winemaking sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CompI:

Composite index

DI:

Dryness index

ECA&D:

European climate assessment and dataset

GCM:

Global climate model

GSP:

Growing season precipitation

GSS:

Growing season suitability

HI:

Huglin index

HyI:

Hydrothermal index

IPCC:

International panel on climate change

MOS:

Model output statistics

NIQR:

Normalized interquartile range

RCM:

Regional climate model

TR:

Total range

SRES:

Synthesis report on emission scenarios

References

  • Alexandrov VA, Hoogenboom G (2000) The impact of climate variability and change on crop yield in Bulgaria. Agric For Meteorol 104(4):315–327. doi:10.1016/S0168-1923(00)00166-0

    Article  Google Scholar 

  • Amerine MA, Winkler AJ (1944) Composition and quality of musts and wines of California grapes, vol 15. Hilgardia, University of California

  • Andrade C, Leite SM, Santos JA (2012) Temperature extremes in Europe: overview of their driving atmospheric patterns. Nat Hazard Earth Syst 12(5):1671–1691. doi:10.5194/nhess-12-1671-2012

    Article  Google Scholar 

  • Battaglini A, Barbeau G, Bindi M, Badeck FW (2009) European winegrowers’ perceptions of climate change impact and options for adaptation. Reg Environ Change 9(2):61–73. doi:10.1007/s10113-008-0053-9

    Article  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 31:491–543. doi:10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  • Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7(3):213–224. doi:10.3354/Cr007213

    Article  Google Scholar 

  • Blanco-Ward D, Queijeiro JMG, Jones GV (2007) Spatial climate variability and viticulture in the Mino River Valley of Spain. Vitis 46(2):63–70

    Google Scholar 

  • Bock A, Sparks T, Estrella N, Menzel A (2011) Changes in the phenology and composition of wine from Franconia, Germany. Clim Res 50(1):69–81. doi:10.3354/Cr01048

    Article  Google Scholar 

  • Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and longterm applications. COSMO Newslett 6:225–235

    Google Scholar 

  • Branas J, Bernon G, Levadoux L (1946) Éléments de viticulture générale. impr. Delmas, Montpellier, France

  • Buttrose MS, Hale CR, Kliewer WM (1971) Effect of temperature on composition of cabernet sauvignon berries. Am J Enol Vitic 22(2):71

    CAS  Google Scholar 

  • Carbonneau A (2003) Ecophysiologie de la vigne et terroir. In: Terroir, zonazione, viticoltura. Trattato internazionale. Phytoline, pp 61–102

  • Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105(5):661–676. doi:10.1093/aob/mcq030

    Article  CAS  Google Scholar 

  • Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM 4 regional atmospheric climate model. DMI Scientific Report 96–4

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Christensen JH, Kjellstrom E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44(2–3):179–194. doi:10.3354/Cr00916

    Article  Google Scholar 

  • Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie ELR (2004) Historical phenology: grape ripening as a past climate indicator. Nature 432(7015):289–290, http://www.nature.com/nature/journal/v432/n7015/suppinfo/432289a_S1.html

    Article  CAS  Google Scholar 

  • Collins M, Booth BB, Bhaskaran B, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2011) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim Dyn 36(9–10):1737–1766. doi:10.1007/s00382-010-0808-0

    Article  Google Scholar 

  • Daux V, Garcia de Cortazar-Atauri I, Yiou P, Chuine I, Garnier E, Le Roy Ladurie E, Mestre O, Tardaguila J (2011) An open-database of grape harvest dates for climate research: data description and quality assessment. Clim Past Discuss 7(6):3823–3858. doi:10.5194/cpd-7-3823-2011

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng HY (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546. doi:10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Dessai S, Hulme M (2007) Assessing the robustness of adaptation decisions to climate change uncertainties: a case study on water resources management in the East of England. Global Environ Chang 17(1):59–72. doi:10.1016/j.gloenvcha.2006.11.005

    Article  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57(3):257–268

    CAS  Google Scholar 

  • Duchene E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25(1):93–99. doi:10.1051/Agro:2004057

    Article  Google Scholar 

  • Elguindi N, Bi X, Giorgi F, Nagarajan B, Pal J, Solmon F, Rauscher S, Zakey A (2007) RegCM version 3.1 user’s guide. PWCG Abdus Salam ICTP

  • Flexas J, Galmes J, Galle A, Gulias J, Pou A, Ribas-Carbo M, Tomas M, Medrano H (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine R 16:106–121. doi:10.1111/j.1755-0238.2009.00057.x

    Article  CAS  Google Scholar 

  • Fraga H, Santos JA, Malheiro AC, Moutinho-Pereira J (2012) Climate change projections for the portuguese viticulture using a multi-model ensemble. Ciência Téc Vitiv 27(1):39–48

    Google Scholar 

  • Gibelin AL, Deque M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20(4):327–339. doi:10.1007/s00382-002-0277-1

    Google Scholar 

  • Goncalves B, Falco V, Moutinho-Pereira J, Bacelar E, Peixoto F, Correia C (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine. J Agric Food Chem 57(1):265–273. doi:10.1021/jf8020199

    Article  CAS  Google Scholar 

  • Hall A, Jones GV (2009) Effect of potential atmospheric warming on temperature-based indices describing Australian winegrape growing conditions. Aust J Grape Wine R 15(2):97–119. doi:10.1111/j.1755-0238.2008.00035.x

    Article  Google Scholar 

  • Hall A, Jones GV (2010) Spatial analysis of climate in winegrape-growing regions in Australia. Aust J Grape Wine R 16(3):389–404. doi:10.1111/j.1755-0238.2010.00100.x

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20):D20119. doi:10.1029/2008jd010201

    Article  Google Scholar 

  • Heinrich G, Gobiet A (2011) The future of dry and wet spells in Europe: a comprehensive study based on the ENSEMBLES regional climate models. Int J Clim. doi:10.1002/joc.2421

  • Hidalgo L (2002) Tratado de viticultura general. Mundi-Prensa Libros Spain

  • Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res 114(D21). doi:10.1029/2009jd011799

  • Huglin P (1978) Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus de l’Académie d’Agriculture. Académie d’agriculture, France

    Google Scholar 

  • Hulme M, Mahony M (2010) Climate change: what do we know about the IPCC? Prog Phys Geogr 34(5):705–718. doi:10.1177/0309133310373719

    Article  Google Scholar 

  • Jackson D (2001) Climate, monographs in cool climate viticulture, 2. Daphne Brasell NZ

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77(1–4):61–73

    Article  Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63(1–2):119–129

    Article  Google Scholar 

  • Jaeger EB, Anders I, Luthi D, Rockel B, Schar C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):349–367. doi:10.1127/0941-2948/2008/0301

    Article  Google Scholar 

  • Jakob Themeßl M, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Clim 31(10):1530–1544. doi:10.1002/joc.2168

    Article  Google Scholar 

  • Jones GV (2006) Climate and terroir: impacts of climate variability and change on wine in fine wine and terroir—the geoscience perspective. Macqueen RW, Meinert LD (eds) Geoscience Canada, Geological Association of Canada, St. John’s, Newfoundland, Canada

  • Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51(3):249–261

    Google Scholar 

  • Jones GV, Duchêne E, Tomasi D, Yuste J, Braslavska O, Schultz HR, Martinez C, Boso S, Langellier F, Perruchot C, Guimberteau G (2005a) Changes in European winegrape phenology and relationships with climate. Paper presented at the Proc. XIV GESCO Symposium, Geisenheim, Germany, 23–26 August 2005

  • Jones GV, Duff AA, Hall A, Myers JW (2010) Spatial analysis of climate in winegrape growing regions in the Western United States. Am J Enol Vitic 61(3):313–326

    Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005b) Climate change and global wine quality. Clim Chang 73(3):319–343. doi:10.1007/s10584-005-4704-2

    Article  Google Scholar 

  • Kenny GJ, Harrison PA (1992) The effects of climate variability and change on grape suitability in Europe. J Wine Res 3(3):163–183. doi:10.1080/09571269208717931

    Article  Google Scholar 

  • Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, WillØn U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). SMHI, Reports Meteorology and Climatology, 108, SMHI, SE-60176 Norrköping, Sweden

  • Kliewer WM (1977) Effect of high-temperatures during bloom-set period on fruit-Set, ovule fertility, and berry growth of several grape cultivars. Am J Enol Vitic 28(4):215–222

    Google Scholar 

  • Knutti R, Allen MR, Friedlingstein P, Gregory JM, Hegerl GC, Meehl GA, Meinshausen M, Murphy JM, Plattner GK, Raper SCB, Stocker TF, Stott PA, Teng H, Wigley TML (2008) A review of uncertainties in global temperature projections over the twenty-first century. J Clim 21(11):2651–2663. doi:10.1175/2007jcli2119.1

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758. doi:10.1175/2009jcli3361.1

    Article  Google Scholar 

  • Koundouras S, Van Leeuwen C, Seguin G, Glories Y (1999) Influence of water status on vine vegetative growth, berry ripening and wine characteristics in mediterranean zone (example of Nemea, Greece, variety Saint-George, 1997). J Int Sci Vigne Vin 33:149–160

    Google Scholar 

  • Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present-day climate in RACMO2: first results and model developments. Ministerie van Verkeer en Waterstaat, Koninklijk Nederlands Meteorologisch Instituut

  • Lobell DB, Field CB, Cahill KN, Bonfils C (2006) Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric For Meteorol 141(2–4):208–218. doi:10.1016/j.agrformet.2006.10.006

    Article  Google Scholar 

  • Magalhães N (2008) Tratado de viticultura: a videira, a vinha e o terroir. Chaves Ferreira Publicações, Lisboa

    Google Scholar 

  • Makra L, Vitanyi B, Gal A, Mika J, Matyasovszky I, Hirsch T (2009) Wine quantity and quality variations in relation to climatic factors in the Tokaj (Hungary) Winegrowing Region. Am J Enol Vitic 60(3):312–321

    Google Scholar 

  • Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43(3):163–177. doi:10.3354/cr00918

    Article  Google Scholar 

  • Mearns LO, Hulme M, Carter TR, Leemans M, Lal M, Whetton PH (2001) Climate scenario development. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 739–768. Available for download from: http://www.ipcc.ch (Chapter 13 of the IPCC WG1 Assessment)

    Google Scholar 

  • Moutinho-Pereira J, Goncalves B, Bacelar E, Cunha JB, Coutinho J, Correia CM (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes. Vitis 48(4):159–165

    CAS  Google Scholar 

  • Moutinho-Pereira JM, Correia CM, Goncalves BM, Bacelar EA, Torres-Pereira JM (2004) Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosynthetica 42(1):81–86

    Article  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press

  • Nakićenović N, Alcamo J, Davis G, de Vries HJM, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Papper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Neumann PA, Matzarakis A (2011) Viticulture in southwest Germany under climate change conditions. Clim Res 47(3):161–169. doi:10.3354/cr01000

    Article  Google Scholar 

  • Orlandini S, Grifoni D, Mancini M, Barcaioli G, Crisci A (2005) Analysis of meteo-climatic variability effects on quality of brunello di montalcino wine. Riv Ital Agrometeorol 2:37–44

    Google Scholar 

  • Osorio ML, Osorio J, Pereira JS, Chaves MM (1995) Responses of photosynthesis to water stress under field conditions in grapevines are dependent on irradiance and temperature. Photosynthesis: from light to biosphere, vol 4. Kluwer, Dordrecht, pp 669–672

  • Pal JS, Giorgi F, Bi XQ, Elguindi N, Solmon F, Gao XJ, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konare A, Martinez D, da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world - the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409. doi:10.1175/Bams-88-9-1395

    Article  Google Scholar 

  • Riou C, Carbonneau A, Becker N, Caló A, Costacurta A, Castro R, Pinto PA, Carneiro LC, Lopes C, Clímaco P, Panagiotou MM, Sotez V, Beaumond HC, Burril A, Maes J, Vossen P (1994) Le determinisme climatique de la maturation du raisin: Application au zonage de la teneur en sucre dans la Communauté Européenne. Office des Publications Officielles des Communautés Européennes, Luxembourg

    Google Scholar 

  • Samuelsson P, Jones CG, Willen U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellstrom E, Nikulin G, Wyser K (2011) The rossby centre regional climate model RCA3: model description and performance. Tellus A 63(1):4–23. doi:10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  • Santos JA, Grätsch SD, Karremann MK, Jones GV, Pinto JG (2012a) Ensemble projections for wine production in the Douro Valley of Portugal. Clim Chang. doi:10.1007/s10584-012-0538-x

  • Santos JA, Malheiro AC, Karremann MK, Pinto JG (2011) Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. Int J Biometeorol 55(2):119–131. doi:10.1007/s00484-010-0318-0

    Article  Google Scholar 

  • Santos JA, Malheiro AC, Pinto JG, Jones GV (2012b) Macroclimate and viticultural zoning in Europe: observed trends and atmospheric forcing. Clim Res 51(1):89–103. doi:10.3354/Cr01056

    Article  Google Scholar 

  • Santos TP, Lopes CM, Rodrigues ML, Souza CR, Maroco JP, Pereira JS, Silva JR, Chaves MM (2003) Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Funct Plant Biol 30(6):663. doi:10.1071/fp02180

    Article  Google Scholar 

  • Schultz H (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine R 6(1):2–12. doi:10.1111/j.1755-0238.2000.tb00156.x

    Article  CAS  Google Scholar 

  • Solomon A, Goddard L, Kumar A, Carton J, Deser C, Fukumori I, Greene AM, Hegerl G, Kirtman B, Kushnir Y, Newman M, Smith D, Vimont D, Delworth T, Meehl GA, Stockdale T, W UCDP (2011) Distinguishing the roles of natural and anthropogenically forced decadal climate variability implications for prediction. Bull Am Meteorol Soc 92(2):141–156. doi:10.1175/2010bams2962.1

    Article  Google Scholar 

  • Spellman G (1999) Wine, weather and climate. Weather 54:230–239

    Article  Google Scholar 

  • Steppeler J, Doms G, Schattler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1–4):75–96. doi:10.1007/s00703-001-0592-9

    Article  Google Scholar 

  • Stock M, Gerstengarbe FW, Kartschall T, Werner PC (2005) Reliability of climate change impact assessments for viticulture. Acta Hortic 689:29–39

    Google Scholar 

  • van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UK

  • van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubordieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55(3):207–217

    Google Scholar 

  • Webb LB, Whetton PH, Bhend J, Darbyshire R, Briggs PR, Barlow EWR (2012) Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat Clim Chang 2(4):259–264. doi:10.1038/Nclimate1417

    Article  Google Scholar 

  • Weigel AP, Knutti R, Liniger MA, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Clim 23(15):4175–4191. doi:10.1175/2010jcli3594.1

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. International geophysics series, vol 91, 2nd edn. Academic, Amsterdam

    Google Scholar 

  • Winkler AJ (1974) General viticulture. University of California Press, Davis

    Google Scholar 

Download references

Acknowledgements

We acknowledge the ENSEMBLES project (contract GOCE-CT-2003-505539), supported by the European Commission’s 6th Framework Programme (EU FP6) for supplying the model datasets (http://ensembles-eu.metoffice.com/). We thank Dr. Joaquim Pinto, at the University of Cologne, the German Federal Environment Agency and the COSMO-CLM consortium for providing COSMO-CLM data. We also acknowledge E-OBS and the data providers in the ECA&D project (http://eca.knmi.nl). This study was carried out under the Project Short-term climate change mitigation strategies for Mediterranean vineyards (Fundação para a Ciência e Tecnologia - FCT, contract PTDC/AGR-ALI/110877/2009). This work is also supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) - under the project FCOMP-01-0124-FEDER-022692. H.F. also thanks the FCT for providing a research scholarship (BI/PTDC/AGR-ALI/110877/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fraga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraga, H., Malheiro, A.C., Moutinho-Pereira, J. et al. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57, 909–925 (2013). https://doi.org/10.1007/s00484-012-0617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-012-0617-8

Keywords

Navigation