Skip to main content

Advertisement

Log in

Changes in daily temperature and precipitation extremes in the Yellow River Basin, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Spatiotemporal changes in climatic extremes in the Yellow River Basin from 1959 to 2008 were investigated on the basis of a suite of 27 climatic indices derived from daily temperature and precipitation data from 75 meteorological stations with the help of the Mann–Kendall test, linear regression method and GIS technique. Furthermore, the changes in the probability distribution of the extreme indices were examined. The results indicate: (1) The whole basin is dominated by significant increase in the frequency of warm days and warm nights, and dominated by significant decrease in the frequency of cold days and cold nights. Although trends in absolute temperature indices show less spatial coherence compared with that in the percentile-based temperature indices, overall increasing trends can be found in Max Tmax (TXx), Min Tmax (TXn), Max Tmin (TNx) and Min Tmin (TNn). (2) Although the spatial patterns and the number of stations with significant changes for threshold and duration temperature indices are also not identical, general positive trends in warm indices (i.e., summer days (SU25), tropical nights (TR20), warm spell duration indicator and growing season length) and negative trends in cold indices (i.e., frost days, ice days and cold spell duration indicator) can be found in the basin. Annual nighttime temperature has increased at a faster rate than that in daytime temperature, leading to obvious decrease in diurnal temperature range. (3) The changes in precipitation indices are much weaker and less spatially coherent compared with these of temperature indices. For all precipitation indices, only few stations are characterized by significantly change in extreme precipitation, and their spatial patterns are always characterized by irregular and insignificant positive and negative changes. However, generally, changes in precipitation extremes present drying trends, although most of the changes are insignificant. (4) Results at seasonal scale show that warming trends occur for all seasons, particularly in winter. Different from that in other three seasons, general positive trends in max 1-day precipitation (Rx1DAY) and max 5-day precipitation (Rx5DAY) are found in winter. Analysis of changes in probability distributions of indices for 1959–1983 and 1984–2008 indicate a remarkable shift toward warmer condition and a less pronounced tendency toward drier condition during the past decades. The results can provide beneficial reference to water resource and eco-environment management strategies in the Yellow River Basin for associated policymakers and stakeholders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Perterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Article  Google Scholar 

  • Bartholy J, Pongrácz R (2007) Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Glob Planet Chang 57:83–95

    Article  Google Scholar 

  • Bocheva L, Marinova T, Simeonov P, Gospodinov I (2009) Variability and trends of extreme precipitation events over Bulgaria (1961–2005). Atmos Res 93:490–497

    Article  Google Scholar 

  • Brown SJ, Caesar J, Ferro CAT (2008) Global changes in extreme daily temperature since 1950. J Geophys Res 113:D05115. doi:10.1029/2006JD008091

    Article  Google Scholar 

  • Cong Z, Yang D, Gao B, Yang H, Hu H (2009) Hydrological trend analysis in the Yellow River basin using a distributed hydrological model. Water Resour Res 45:W00A13. doi:10.1029/2008WR006852

  • da Silva VPR (2004) On climate variability in Northeast of Brazil. J Arid Environ 58:575–596

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Fu G, Chen S, Liu C, Shepard D (2004) Hydro-climatic trends of the Yellow River Basin for the last 50 years. Clim Change 65(1–2):149–178

    Article  Google Scholar 

  • Gemmer M, Fischer T, Jiang T (2011) Trends in precipitation extremes in the Zhujiang River Basin, South China. J Clim 24:750–761

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445

    Article  CAS  Google Scholar 

  • Griffiths ML, Bradley RS (2007) Variations of twentieth-century temperature and precipitation extreme indicators in the Northeast United States. J Clim 20:5401–5417

    Article  Google Scholar 

  • Griffiths GM et al (2005) Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. Int J Climatol 25:1301–1330

    Article  Google Scholar 

  • Grim AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Assess 25:537–554

    Article  Google Scholar 

  • Groisman PY et al (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350

    Article  Google Scholar 

  • Hann CT (2002) Statistical methods in hydrology (second version). Blackwell, Ames

  • Hu D, Saito Y, Kempe S (1998) Sediment and nutrient transport to the coastal zone. In: Galloway JN, Mellilo JM (eds) Asian change in the context of global climate change: impact of natural and anthropogenic changes in Asia on global biogeochemical cycles. IGBP publication series, vol 3. Cambridge University Press, Cambridge, pp 245–270

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Iwashima T, Yamamoto R (1993) A statistical analysis of the extreme event: long-term trend of heavy daily precipitation. J Meteorol Soc Jpn 71(5):637–640

    Google Scholar 

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its variations over the last 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  • Karl TR, Knight RW, Plummer N (1995) Trends in high-frequency climate variability in the twentieth century. Nature 377:217–220

    Article  CAS  Google Scholar 

  • Karl TR, Knight RW, Easterling DR, Quayle RG (1996) Indices of climate change for the United States. Bull Am Meteorol Soc 77(2):279–292

    Article  Google Scholar 

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J Clim 13:3760–3788

    Article  Google Scholar 

  • Kiktev D, Sexton DMH, Alexander L, Folland CK (2003) Comparison of modeled and observed trends in indices of daily climate extremes. J Clim 16:560–571

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-hansen C, Heino R, Bessemoulin P, Müller-westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswal AK, Kolli RK, Sikder AB, Deshpande NR, Revadekar JV, Yeleuova K, Vandasheva S, Faleyeva M, Gomboluudev P, Budhathoki KP, Hussain A, Afzaal M, Chandrapala L, Anvar H, Amanmurad D, Asanova VS, Jones PD, New MG, Spektorman T (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111:D16105. doi:10.1029/2005JD006316

    Article  Google Scholar 

  • Liebmann B, Vera CS, Caevalho LMV, Camilloni IA, Hoerling MP, Allured D, Barros VR, Báez J, Bidegain M (2004) An observed trend in central South American precipitation. J Clim 17:4357–4367

    Article  Google Scholar 

  • Liu CM (2004) Study of some problems in water cycle changes of the Yellow River Basin. Adv Water Sci 15(5):608–614 (in Chinese)

    Google Scholar 

  • Liu X, Yin Z, Shao X, Qin N (2006) Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J Geophys Res 111:D19109. doi:10.1029/2005JD006915

    Article  Google Scholar 

  • Liu Q, Yang Z, Cui B (2008) Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow River Basin, China. J Hydrol 361:330–338

    Article  Google Scholar 

  • Liu Q, Yang Z, Cui B, Sun T (2010) The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrol Process 24:2171–2181

    Article  Google Scholar 

  • Liu L, Xu ZX, Huang JX (2011) Spatio-temporal variation and abrupt changes for major climate variables in the Taihu Basin, China. Stoch Environ Res Risk Assess. doi:10.1007/s00477-011-0547-8

  • Lupikasza E (2009) Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int J Climatol 30:991–1007

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Mason SJ, Waylen PR, Mimmack GM, Rajaratnam B, Harrison JM (1999) Changes in extreme rainfall events in South Africa. Clim Change 41(2):249–257

    Article  Google Scholar 

  • Mc Vicar TR, Van Niel TG, Li LT, Hutchinson MF, Mu XM, Liu ZH (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J Hydrol 338:196–220

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett 32:L18719

    Article  Google Scholar 

  • Moberg A et al (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res 111:D22106. doi:10.1029/2006JD007103

    Article  Google Scholar 

  • Nutter FW (1999) Global climate change: why U.S. insurers care. Clim Change 42:45–49

    Article  Google Scholar 

  • Pal I, Al-Tabbaa A (2009) Trends in seasonal precipitation extremes—an indicator of ‘climate change’ in Kerala, India. J Hydrol 367:62–69

    Article  Google Scholar 

  • Peterson TC (2005) The workshop on enhancing south and central Asian climate monitoring and indices. Pune, India, February 14–19, 2005, CLIVAR Exchanges, 10, 6

  • Peterson TC, Folland C, Gruza G, Hogg W, Mokssit A, Plummer N (2001) Report of the activities of the working group on climate change detection and related rapporteurs. Tech. Doc. 1071, 146 pp, World Meteorological Organisation, Geneva

  • Plummer N, Salinger MJ, Nicholis N, Suppiah R, Hennessy KJ, Leighton RM, Trewin B, Page CM, Lough JM (1999) Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Clim Change 42:183–202

    Article  Google Scholar 

  • Pryor SC, Howe JA, Kunkel KE (2009) How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int J Climatol 29:31–45

    Article  Google Scholar 

  • Rahimzadeh F, Asgari A, Fattahi E (2009) Variability of extreme temperature and precipitation in Iran during recent decades. Int J Climatol 29:329–343

    Article  Google Scholar 

  • Rodrigo FS (2009) Changes in the probability of extreme daily precipitation observed from 1951 to 2002 in the Iberian Peninsula. Int J Climatol 30:1512–1525

    Google Scholar 

  • Schmidli J, Schmutz C, Frei C, Wanner H, Schär C (2002) Mesoscale precipitation variability in the region of the European Alps during the 20th century. Int J Climatol 22:1049–1074

    Article  Google Scholar 

  • Shi H, Shao MA (2000) Soil and water loss from the Loess Plateau in China. J Arid Environ 45:9–20

    Article  Google Scholar 

  • Siliverstovs B, Ötsch R, Kemfert C, Jaeger CC, Haas A, Kremers H (2010) Climate change and modeling of extreme temperatures in Switzerland. Stoch Environ Res Risk Assess 24:311–326

    Article  Google Scholar 

  • Su BD, Jiang T, Jin WB (2006) Recent trends in observed temperature and precipitation extremes in the Yangtze River Basin, China. Theor Appl Climatol 83:139–151

    Article  Google Scholar 

  • Su B, Gemmer M, Jiang T (2008) Spatial and temporal variation of extreme precipitation over the Yangtze River Basin. Quat Int 186:22–31

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211

    Article  Google Scholar 

  • Trömel S, Schönwiese CD (2007) Probability change of extreme precipitation observed from 1901 to 2000 in Germany. Theor Appl Climatol 87(1–4):29–39

    Article  Google Scholar 

  • Vincent LA, Mekis É (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the 20th century. Atmos Ocean 44:177–193

    Article  Google Scholar 

  • Vincent LA, Aguilar E, Saindou M, Hassane AF, Jumaux G, Roy D, Booneeady P, Virasami R, Randriamarolaza LYA, Faniriantsoa FR, Amelie V, Seeward H, Montfraix B (2011) Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. J Geophys Res 116:D10108. doi:10.1029/2010JD015303

    Article  Google Scholar 

  • Von Storch H (1995) Misuses of statistical analysis in climate research. In: Von Storch H, Navarra A (eds) Analysis of climate variability: application of statistical techniques. Springer, Berlin, pp 11–26

    Google Scholar 

  • Wang XL (2008) Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J Appl Meteorol Climatol 47:2423–2444

    Article  Google Scholar 

  • Wang XL, Feng Y (2009) RHtestV3 user manual, report, 26 pp, Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, Gatineau. http://cccma.seos.uvic.ca/ETCCDI/software.shtml. Accessed 15 Sept 2009

  • Wang YQ, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys Res Lett 32:L09707. doi:10.1029/2005GL02257

    Article  Google Scholar 

  • Wang R, Ren H, Ouyang Z (2000) China water vision. China Meteorological Press, Beijing

    Google Scholar 

  • Wang H, Yang Z, Saito Y, Liu JP, Sun X, Wang Y (2007) Stepwise decreases of the Huanghe (Yellow River) sediment load (1951–2005): impacts of climate change and human activities. Glob Planet Chang 57:331–354

    Article  Google Scholar 

  • Wang SY, Liu JS, Yang CJ (2008) Eco-environmental vulnerability evaluation in the Yellow River Basin, China. Pedosphere 18(2):171–182

    Article  Google Scholar 

  • Wang W, Shao Q, Peng S, Xing W, Yang T, Luo Y, Yong B, Xu J (2012) Reference evapotranspiration change and the causes across the Yellow River Basin during 1957–2008 and their spatial and seasonal differences. Water Resour Res 48:W05530. doi:10.1029/2011WR010724

    Article  Google Scholar 

  • Xoplaki E, González-Rouco Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large scale dynamics and trends. Clim Dyn 23:63–78

    Article  Google Scholar 

  • Xu Y, Xu C, Gao X, Luo Y (2009) Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century. Quatern Int 208:44–52

    Article  Google Scholar 

  • Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Change 53:355–392

    Article  Google Scholar 

  • Yang D, Li C, Hu H, Lei Z, Yang S, Kusuda T, Koike T, Musiake K (2004) Analysis of water resources variability in the Yellow River of China during the last half century using historical data. Water Resour Res 40:W06502. doi:10.1029/2003WR002763

    Article  Google Scholar 

  • Yang T, Shao QX, Hao ZC, Xu C-Y, Chen X (2010a) Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in Pearl River Basin, Southern China. J Hydrol 380:386–405

    Article  Google Scholar 

  • Yang T, Xu C-Y, Shao Q, Chen X, Lu GH, Hao ZC (2010b) Temporal and spatial patterns of low-flow changes in the Yellow River in the last half century. Stoch Environ Res Risk Assess 24(2):297–309

    Article  Google Scholar 

  • Yang T, Wang X, Zhao C, Chen X, Yu Z, Shao Q, Xu C-Y, Xia J, Wang W (2011) Changes of climate extremes in a typical arid zone: observations and multimodel ensemble projections. J Geophys Res 116:D19106. doi:10.1029/2010JD015192

    Article  Google Scholar 

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Nat Acad Sci USA 107(51):22151–22156

    Article  CAS  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16(9):1807–1829

    Article  Google Scholar 

  • Zhai P, Pan X (2003) Trends in temperature extremes during 1951–1999 in China. Geophys Res Lett 30:1913. doi:10.1029/2003GL018004

    Article  Google Scholar 

  • Zhang Q, Xu CY, Zhang Z, Chen YD (2008a) Changes of temperature extremes for 1960–2004 in Far-West China. Stoch Environ Res Risk Assess 23(6):721–735

    Article  Google Scholar 

  • Zhang Q, Xu CY, Zhang Z, Ren G, Chen YD (2008b) Climate change or variability? The case of Yellow River as indicated by extreme maximum and minimum air temperature during 1960–2004. Theor Appl Climatol 93(1–2):35–43

    Article  Google Scholar 

  • Zhang Q, Xu C-Y, Tao Y (2009a) Variability of water resource in the Yellow River Basin of past 50 years, China. Water Resour Manage 23(6):1157–1170

    Article  Google Scholar 

  • Zhang Q, Xu CY, Zhang Z, Chen X, Han Z (2009b) Precipitation extremes in a karst region: a case study in the Guizhou province, Southwest China. Theor Appl Climatol 101(1–2):53–65

    Article  Google Scholar 

  • Zhang Q, Li J, Chen YD, Chen X (2011) Observed changes of temperature extremes during 1960–2005 in China: natural or human-induced variations. Theor Appl Climatol. doi:10.1007/s00704-011-0447-3

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51009046, 50839002), the Natural Science Foundation of Jiangsu province (BK2010519), and CSIRO Computational Sciences and Simulation Capability Platform. We thank the National Climatic Centre (NCC) of the China Meteorological Administration (CMA) for providing the valuable meteorological data. Cordial thanks are extended to the Editor-in-Chief Professor George Christakos, the Associate Editor and two anonymous referees for their valuable comments which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Shao, Q., Yang, T. et al. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stoch Environ Res Risk Assess 27, 401–421 (2013). https://doi.org/10.1007/s00477-012-0615-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0615-8

Keywords

Navigation