Skip to main content
Log in

Locus heterogeneity of Dent’s disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Dent′s disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL1 gene, which is usually mutated in patients with Lowe syndrome, have recently been shown to lead to a Dent-like phenotype, called Dent’s disease 2. About 25% of Dent’s disease patients do not carry CLCN5/OCRL1 mutations. The CLCN4 and SLC9A6 genes have been investigated, but no mutations have been identified. The recent discovery of a novel mediator of renal amino acid transport, collectrin (the TMEM27 gene), may provide new insight on the pathogenesis of Dent’s disease. We studied 31 patients showing a phenotype resembling Dent’s disease but lacking any CLCN5 mutations by direct sequencing of the OCRL1 and TMEM27 genes. Five novel mutations, L88X, P161HfsX167, F270S, D506N and E720D, in the OCRL1 gene, which have not previously been reported in patients with Dent’s or Lowe disease, were identified among 11 patients with the classical Dent’s disease phenotype. No TMEM27 gene mutations were discovered among 26 patients, 20 of whom had an incomplete Dent’s disease phenotype. Our findings confirm that OCRL1 is involved in the functional defects characteristic of Dent’s disease and suggest that patients carrying missense mutations in exons where many Lowe mutations are mapped may represent a phenotypic variant of Lowe syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frymoyer PA, Scheinman SJ, Dunham PB, Jones B, Hueber P, Schroeder ET (1991) X-linked recessive nephrolithiasis with renal failure. N Engl J Med 325:681–686

    Article  CAS  Google Scholar 

  2. Wrong O, Norden AG, Feest TG (1994) Dent’s disease: a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493

    CAS  PubMed  Google Scholar 

  3. Scheinman SJ, Thakker RV (2000) Genetic aspects of osteoporosis and metabolic bone disease. Humana Press, Totowa, pp 133–152

    Google Scholar 

  4. Lloyd SE, Pearce SHS, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449

    Article  CAS  Google Scholar 

  5. Piwon N, Gunther W, Schwake M, Bösl MR, Jentsch TJ (2000) ClC-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373

    Article  CAS  Google Scholar 

  6. Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945

    Article  CAS  Google Scholar 

  7. Akuta N, Lloyd SE, Igarashi T, Shiraga H, Matsuyama T, Yokoro S, Cox JP, Thakker RV (1997) Mutations of CLCN5 in Japanese children with idiopathic low molecular weight proteinuria, hypercalciuria and nephrocalcinosis. Kidney Int 52:911–916

    Article  CAS  Google Scholar 

  8. Ludwig M, Doroszewicz J, Seyberth HW, Bökenkamp A, Balluch B, Nuutinen M, Utsch B, Waldegger S (2005) Functional evaluation of Dentșs disease-causing mutations: implications for ClC-5 channel trafficking and internalization. Hum Genet 117:228–237

    Article  Google Scholar 

  9. Hoopes RR Jr, Raja KM, Koich A, Hueber P, Reid R, Knohl SJ, Scheinman SJ (2004) Evidence for genetic heterogeneity in Dent’s disease. Kidney Int 65:1615–1620

    Article  CAS  Google Scholar 

  10. Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent disease with mutations in OCRL1. Am J Hum Genet 76:260–267

    Article  CAS  Google Scholar 

  11. Nussbaum RL, Orrison BM, Jänne PA, Charnas L, Chinault AC (1997) Physical mapping and genomic structure of the Lowe syndrome gene OCRL1. Hum Genet 99:145–150

    Article  CAS  Google Scholar 

  12. Lowe CU, Terrey M, MacLachan EA (1952) Organic aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation: a clinical entity. Am J Dis Child 83:164–184

    CAS  Google Scholar 

  13. Cho HY, Lee BH, Choi HJ, Ha IS, Choi Y, Cheong HI (2008) Renal manifestations of dent disease and lowe syndrome. Pediatr Nephrol 23:243–249

    Article  Google Scholar 

  14. Tosetto E, Ghiggeri GM, Emma F, Barbano G, Carrea A, Vezzoli G, Torregrossa R, Cara M, Ripanti G, Ammenti A, Peruzzi L, Murer L, Ratsch IM, Citron L, Gambaro G, D’Angelo A, Anglani F (2006) Phenotypic and genetic heterogeneity in Dent’s disease—the results of an Italian collaborative study. Nephrol Dial Transplant 21:2452–2463

    Article  CAS  Google Scholar 

  15. Danilczyk U, Sarao R, Remy C, Benabbas C, Stange G, Richter A, Arya S, Pospisilik JA, Singer D, Camargo SM, Makrides V, Ramadan T, Verrey F, Wagner CA, Penninger JM (2006) Essential role for collectrin in renal amino acid transport. Nature 444:1088–1091

    Article  CAS  Google Scholar 

  16. Mount DB (2007) Collectrin and the kidney. Curr Opin Nephrol Hypertens 16:427–429

    Article  Google Scholar 

  17. Malakauskas SM, Quan H, Fields TA, McCall SJ, Yu MJ, Kourany WM, Frey CW, Le TH (2007) Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. Am J Physiol Renal Physiol 292:F533–F544

    Article  CAS  Google Scholar 

  18. Addis M, Loi M, Lepiani C, Cau M, Melis MA (2004) OCRL mutation analysis in Italian patients with Lowe syndrome. Hum Mutat 23:524–525

    Article  Google Scholar 

  19. Utsch B, Bokenkamp A, Benz MR, Besbas N, Dötsch J, Franke I, Fründ S, Gok F, Hoppe B, Karle S, Kuwertz-Bröking E, Laube G, Neb M, Nuutinen M, Ozaltin F, Rascher W, Ring T, Tasic V, van Wijk JA, Ludwig M (2006) Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am J Kidney Dis 48(942):e1–e14

    Google Scholar 

  20. Sekine T, Nozu K, Iyengar R, Fu XJ, Matsuo M, Tanaka R, Iijima K, Matsui E, Harita Y, Inatomi J, Igarashi T (2007) OCRL1 mutations in patients with Dent disease phenotype in Japan. Pediatr Nephrol 22:975–980

    Article  Google Scholar 

  21. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  CAS  Google Scholar 

  22. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900

    Article  CAS  Google Scholar 

  23. Sunyaev S, Ramensky V, Bork P (2000) Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 16:198–200

    Article  CAS  Google Scholar 

  24. Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479

    Article  CAS  Google Scholar 

  25. Ungewickell A, Ward ME, Ungewickell E, Majerus PW (2004) The inositol polyphosphate 5-phosphatase OCRL associates with endosomes that are partially coated with clathrin. Proc Natl Acad Sci U S A 101:13501–13506

    Article  CAS  Google Scholar 

  26. Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M (2006) Membrane targeting and activation of the Lowe syndrome protein OCRL1 by Rab GTPases. EMBO J 25:3750–3761

    Article  CAS  Google Scholar 

  27. Faucherre A, Desbois P, Satre V, Lunardi J, Dorseuil O, Gacon G (2003) Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network. Hum Mol Genet 12:2449–2456

    Article  CAS  Google Scholar 

  28. Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P (2007) A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell 13:377–390

    Article  CAS  Google Scholar 

  29. McCrea HJ, Paradise S, Tomasini L, Addis M, Melis MA, De Matteis MA, De Camilli P (2008) All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding. Biochem Biophys Res Commun 369:493–499

    Article  CAS  Google Scholar 

  30. Schneider JF, Boltshauser E, Neuhaus TJ, Rauscher C, Martin E (2001) MRI and proton spectroscopy in Lowe syndrome. Neuropediatrics 32:45–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grant No. 2005063822_004 from the Italian Ministry of Education, University and Research.

This work received an award at the ERA-EDTA XLIV Congress (Barcelona, Spain 21–24 June 2007) as one of the best abstracts presented by young authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Anglani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tosetto, E., Addis, M., Caridi, G. et al. Locus heterogeneity of Dent’s disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations. Pediatr Nephrol 24, 1967–1973 (2009). https://doi.org/10.1007/s00467-009-1228-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1228-4

Keywords

Navigation