Skip to main content
Log in

Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana

  • Plant Animal Interactions
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We experimentally demonstrate that elevated CO2 can modify herbivory-induced plant chemical responses in terms of both total and individual glucosinolate concentrations. Overall, herbivory by larvae of diamondback moths (Plutella xylostella) resulted in no change in glucosinolate levels of the annual plant Arabidopsis thaliana under ambient CO2 conditions. However, herbivory induced a significant 28–62% increase in glucosinolate contents at elevated CO2. These inducible chemical responses were both genotype-specific and dependent on the individual glucosinolate considered. Elevated CO2 can also affect structural defenses such as trichomes and insect-glucosinolate interactions. Insect performance was significantly influenced by specific glucosinolates, although only under CO2 enrichment. This study can have implications for the evolution of inducible defenses and coevolutionary adaptations between plants and their associated herbivores in future changing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA (1999) Induced-responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Article  Google Scholar 

  • Agrawal AA, Karban R (1999) Why induced defenses may be favored over constitutive defenses strategies in plants. In: Tollrian R, Harvell CD (eds) The ecology of inducible defenses. Princeton University Press, NJ, pp 45–61

    Google Scholar 

  • Anderson VL, McLean RA (1974) Design of experiments. Marcel Dekker, New York

    Google Scholar 

  • Antonovics J (1992) Toward community genetics. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens. University of Chicago Press, Illinois, pp 426–449

    Google Scholar 

  • Bano FA (1993) Glucosinolates in Arabidopsis. Dissertation, University of East Anglia, Norwich

  • Bazin A, Goverde M, Erhardt A (2002) Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus. Ecol Entomol 27:271–278

    Article  Google Scholar 

  • Berenbaum MR (1995) The chemistry of defense: theory and practice. Proc Natl Acad Sci USA 92:2–8

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum MR, Zangerl AR (1992) Quantification of chemical coevolution. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens. The University of Chicago Press, Chicago, pp 69–87

    Google Scholar 

  • Bergelson J, Stahl E, Dudek S, Kreitman M (1998) Genetic variation within and among populations of Arabidopsis thaliana. Genetics 148:1311–1323

    PubMed  CAS  Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant–insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222

    Article  Google Scholar 

  • Bidart-Bouzat MG (2004) Herbivory modifies the lifetime fitness response of Arabidopsis thaliana to elevated CO2. Ecology 85:297–303

    Article  Google Scholar 

  • Bird SM, Gray JE (2003) Signals from the cuticle affect epidermal cell differentiation. New Phytologist 157:9–23

    Article  CAS  Google Scholar 

  • Brunner E, Domhof S, Langer F (2002) Nonparametric analysis of longitudinal data in factorial experiments. Wiley, New York

    Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867

    Article  PubMed  CAS  Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA (1989) The effects of enriched carbon dioxide atmospheres on plant–insect herbivore interactions. Science 243:1198–1200

    Article  PubMed  Google Scholar 

  • Fraenkel GS (1959) The raison d’etre of secondary plant substances. Science 129:1466–1470

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress. Recent Adv Phytochem 18:273–320

    CAS  Google Scholar 

  • Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95

    Article  Google Scholar 

  • Holton MK, Lindroth RL, Nordheim EV (2003) Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137:233–244

    Article  PubMed  Google Scholar 

  • Hughes JB, Daily GC, Ehrlich PR (1997) Population diversity: its extent and extintion. Science 278:689–691

    Article  PubMed  CAS  Google Scholar 

  • Joutei AB, Van Impe JRG, Lebrun P (2000) Effect of elevated CO2 on the demography of a leaf-sucking mite feeding on bean. Oecologia 123:75–81

    Article  Google Scholar 

  • Karowe DN, Seimens DH, Mitchell-Olds T (1997) Species-specific response of glucosinolate content to elevated atmospheric CO2. J Chem Ecol 23:2569–2582

    Article  CAS  Google Scholar 

  • Kennedy GG, Barbour JD (1992) Resistance variation on natural and managed systems. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens. The University of Chicago Press, Chicago, pp 13–41

    Google Scholar 

  • Kessler A, Baldwin IT (2004) Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco, Nicotiana attenuata. Plant J 38:639–649

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ (2001) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325–332

    PubMed  CAS  Google Scholar 

  • Kopper BJ, Lindroth RL, Nordheim EV (2001) CO2 and O3 effects on paper birch (Betulaceae: Betula papyrifera) phytochemistry and whitemarked tussock moth (Lymantriidae: Orgyia leucostigma) performance. Environ Entomol 30:1119–1126

    Article  CAS  Google Scholar 

  • Lindroth RL, Kinney KK (1998) Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. J Chem Ecol 24:1677–1695

    Article  CAS  Google Scholar 

  • Lindroth RL, Roth S, Nordheim EV (2001) Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia 126:371–379

    Article  Google Scholar 

  • Magrath R, Herron C, Giamoustaris A, Mithen R (1993) The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breeding 111:55–72

    Article  CAS  Google Scholar 

  • Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435–1444

    Article  Google Scholar 

  • McCloud ES, Berenbaum MR (1999) Effects of enhanced UV-B radiation on a weedy forb (Plantago lanceolata) and its interactions with a generalist and specialist herbivore. Entomol Exp Appl 93:233–247

    Article  Google Scholar 

  • Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103

    Article  CAS  Google Scholar 

  • Mithen R, Campos H (1996) Genetic variation of alphatic glucosinolates in Arabidopsis thaliana and prospects for map based gene cloning. Entomol Exp Appl 80:202–205

    Article  CAS  Google Scholar 

  • Mithen R, Raybould AF, Giamoustaris A (1995) Divergent selection for secondary metabolites between wild populations of Brassica oleracea and its implications for plant–herbivore interactions. Heredity 75:472–484

    CAS  Google Scholar 

  • Nayar JK, Thorsteinson AJ (1963) Further investigations into the chemical basis os insect–host plant relationships in an oligophagous insect, Plutella maculipennis (Curtis) (Lepidoptera: Plutellidae). Can J Zool 41:923–929

    Article  CAS  Google Scholar 

  • Neuhauser C et al (2003) Community genetics: expanding the synthesis of ecology and genetics. Ecology 84:545–558

    Article  Google Scholar 

  • Penuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? TREE 13:20–24

    Google Scholar 

  • Potvin C, Roff DA (1993) Distrubution-free and robust statistical methods: viable alternatives to parametric statistics. Ecology 74:1617–1628

    Article  Google Scholar 

  • Quarrie SA, Jones HG (1977) Effect of abscisic acid and water stress on development and morphology of wheat. J Exp Bot 28:192–203

    Article  CAS  Google Scholar 

  • Ratcliffe D (1961) Adaptation to habitat in a group of annual plants. J Ecol 49:187–203

    Article  Google Scholar 

  • Roth S, Lindroth RL, Volin JC, Kruger EL (1998) Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Global Change Biol 4:419–430

    Article  Google Scholar 

  • Siemens DH, Mitchell-Olds T (1998) Evolution of pest-induced defenses in Brassica plants: tests of theory. Ecology 79:632–646

    Google Scholar 

  • Stahl E (1888) Pflanzen und Schnecken. Biologische studie uber die Schutzmittel der Pflanzen gegen Schneckenfrass. Jenaische Zeitschrift fur Medizin und Naturwissenschaft 22:557–684 (Translation to English by G. Fraenkel 1959)

  • Stowe KA (1998) Realized defense of artificially selected lines of Brassica rapa: effects of quantitative genetic variation in foliar glucosinolate concentration. Environ Entomol 27:1166–1174

    Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. TREE 17:278–284

    Google Scholar 

  • Talekar NS, Shelton AM (1993) Biology, ecology, and management of the diamondback moth. Annu Rev Entomol 38:275–301

    Article  Google Scholar 

  • Tollrian R, Harvell CD (1999) The evolution of inducible defenses: current ideas. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, NJ, pp 306–321

    Google Scholar 

  • Traw MB, Lindroth RL, Bazzaz FA (1996) Decline in gypsy moth (Lymantria dispar) performance in an elevated CO2 atmosphere depends upon host plant species. Oecologia 108:113–120

    Article  Google Scholar 

  • Vallejo F, Tomas-Barberan FA, Gonzalez A, Benavente-Garcia O, Garcia-Viguera C (2003) Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions. J Sci Food Agric 83:307–313

    Article  CAS  Google Scholar 

  • Whitham TG, Young WP, Martinsen GD, Gehring CA, Schweitzer JA, Shuster SM, Wimp GM, Fischer DG, Bailey JK, Lindroth RL, Woolbright S, Kuske CR (2003) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559–573

    Article  Google Scholar 

  • Zangerl AR, Berenbaum MR (1990) Furanocoumarin induction in wild parsnip: genetics and populational variation. Ecology 7:1933–1940

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Juan L. Bouzat and Ken Paige for helpful comments on previous versions of this manuscript, Daniel Warnock and Evan deLucia for providing materials for this experiment, and the Arabidopsis Biological Resource Center for supplying seeds for this experiment. This work was funded by a Sigma Xi Grant-in-Aid of Research to M.G.B.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gabriela Bidart-Bouzat.

Additional information

Communicated by Richard Lindroth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidart-Bouzat, M.G., Mithen, R. & Berenbaum, M.R. Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana . Oecologia 145, 415–424 (2005). https://doi.org/10.1007/s00442-005-0158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0158-5

Keywords

Navigation