Skip to main content

Advertisement

Log in

Natural products as antiparasitic drugs

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract.

Natural products are not only the basis for traditional or ethnic medicine. Only recently, they have provided highly successful new drugs such as Artemisinin. Furthermore, screening natural products found in all sorts of environments such as the deep sea, rain forests and hot springs, and produced by all sorts of organisms ranging from bacteria, fungi and plants to protozoa, sponges and invertebrates, is a highly competitive field where all of the major pharmaceutical companies are encountered. Already, many new natural product groups have revealed antiparasitic properties of surprising efficacy and selectivity, as will be shown in this review for plant-derived alkaloids, terpenes and phenolics. Many novel lead structures, however, have severe chemico-physical drawbacks such as poor solubility. Here, innovative drug formulations and carrier systems might help, as discussed by the authors in another article of this series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Akendengue B, Ngou-Milama E, Laurens A, Hocquemiller R (1999) Recent advances in the fight against leishmaniasis with natural products. Parasite 6:3–8

    Google Scholar 

  • Angerhofer CK, Pezzuto JM, König GM, Wright AD, Sticher O (1992) Antimalarial activity of sesquiterpenes from the marine sponge Acanthella klethra. J Nat Prod 55:1787–1789

    Google Scholar 

  • Angerhofer CK, Guinaudeau H, Wongpanich V, Pezzuto JM, Cordell GA (1999) Antiplasmodial and cytotoxic activity of natural bisbenzylisoquinoline alkaloids. J Nat Prod 62:59–66

    Google Scholar 

  • Bastos JK, Albuquerque S, Silva ML (1999) Evaluation of the trypanocidal activity of lignans isolated from the leaves of Zanthoxylum naranjillo. Planta Med 65:541–544

    Google Scholar 

  • Barata LE, Santos LS, Ferri PH, Phillipson JD, Paine A, Croft SL (2000) Anti-leishmanial activity of neolignans from Virola species and synthetic analogues. Phytochemistry 55:589–595

    Google Scholar 

  • Bezabih M, Abegaz BM, Dufall K, Croft SL, Skinner-Adams T, Davis TM (2001) Antiplasmodial and antioxidant isofuranonaphthoquinones from the roots of Bulbine capitata. Planta Med 67:340–374

    Google Scholar 

  • Chen M, Christensen SB, Blom J, Lemmich E, Nadelmann L, Fich K, Theander TG, Kharazami A (1993) Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrob Agents Chemother 37:2550–2556

    Google Scholar 

  • Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazami A (1994a) Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrob Agents Chemother 38:1339–1344

  • Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazami A (1994b) Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother 38:1470–1475

  • El-On J, Jacobs GP, Weinrauch L (1988) Topical chemotherapy of cutaneous leishmaniasis. Parasit Today 4:76–81

    Google Scholar 

  • Elford BC, Roberts MF, Phillipson JD, Wilson RJ (1987) Potentiation of the antimalarial activity of qinghaosu by methoxylated flavones. Trans R Soc Trop Med Hyg 81:434–436

    Google Scholar 

  • Fournet A, Barrios AA, Munoz V, Hocquemiller R, Cave A (1992) Effect of natural naphthoquinones in BALB/c mice infected with Leishmania amazonensis and L. venezuelensis. Trop Med Parasitol 43:219–222

    Google Scholar 

  • Fournet A, Barrios AA, Munoz V, Hocquemiller R, Cave A, Bruneton J (1993a) 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob Agent Chemother 37:859–863

  • Fournet A, Hocquemiller R, Roblot F, Cave A, Richomme P, Bruneton J (1993b) Effects of some bisbenzylisoquinoline alkaloids on American Leishmania sp. in BALB/c mice. Phytother Res 7:281–284

    Google Scholar 

  • Francois G, Timperman G, Elling W, Assi LA, Holenz J, Bringmann G (1997a) Naphthylisoquinoline alkaloids from Triphyophyllum peltatum, Ancistrocladus abbreviatus and Ancistrocladus barteri against Plasmodium berghei (Anka strain) in vivo. J Ethnopharmacol 46:115–120

  • Francois G, Timperman G, Elling W, Assi LA, Holenz J, Bringmann G (1997b) Naphthylisoquinoline alkaloids against malaria: evaluation of the curative potentials of dioncophylline C and dioncopeltine A against P. berghei in vivo. Antimicrob Agents Chemother 41:2533–2539

    Google Scholar 

  • Gale M Jr, Carter V, Parsons M (1994) Cell cycle-specific induction of an 89 kDa serine/threonine protein kinase activity in Trypanosoma brucei. J Cell Sci 107:1825–1832

    Google Scholar 

  • Gantier JC, Fournet A, Munos HM, Hocquemiller R (1996) The effect of some 2-substitutes quinolines isolated from Galipea longiflora on Plasmodium vinckei petteri infected mice. Planta Med 62:285–286

  • Grellier P, Ramiaramanana L, Millerioux V, Deharo E, Schrevel J, Frappier F, Trigalo F, Bodo B, Pousset J-L (1996) Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from Cryptolepsis sanguinolenta. Phytother Res 10:317–321

    Google Scholar 

  • Hallock YF, Cardellina JHII, Schaffer M, Bringmann G, Francois G, Boyd MR (1998) Korundamine A, a novel HIV-inhibitory and antimalarial "hybrid" naphthylisoquinoline alkaloid heterodimer from Ancistrocladus korupensis. Bioorg Med Chem Lett 8:1729

    Google Scholar 

  • Hazra B, Gosh R, Banerjee A, Kirby GC, Warhust DC, Phillipson JD (1995) In vitro antiplasmodial effects of diospyrin, a plant-derived naphthoquinoid, and a novel series of derivatives. Phytother Res 9:72–74

    Google Scholar 

  • Hocquemiller R, Cortes D, Arango GJ, Myint SH, Cavé A (1991) Isolation and synthesis of espintanol, a new antiparasitic monoterpene. J Nat Prod 54:445–452

    Google Scholar 

  • Holzgrabe U, Bechthold A (1999) Paradigmenwechsel in der Entwicklung antiinfektiver Chemotherapeutika. Chemother J 8:69–78

    Google Scholar 

  • Kannan R, Sahal D, Chauhan VS (2002) Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. Chem Biol 9:321–332

    Google Scholar 

  • Kayser O, Kiderlen AF, Folkens U, Kolodziej H (1999) Antileishmia activity of aurones. Planta Med 65:315–319

    Google Scholar 

  • Kayser O, Kiderlen AF, Laatsch H, Croft SL (2000) In vitro leishmanicidal activity of monomeric and dimeric naphthoquinones. Acta Trop 77:307–314

    Google Scholar 

  • Kayser O, Brun R, Kiderlen AF (2001a) In vitro activity of aurones against Plasmodium falciparum strains NF1 and K54. Planta Med 67:718–721

  • Kayser O, Waters WR, Upton S, Keithly JS (2001b) Evaluation of in vitro and in vivo activity of aurones and related compounds against Cryptosporidium parvum. Planta Med 67:722–725

    Google Scholar 

  • Kayser O, Kiderlen AF, Laatsch H (2001c) Verwendung von Naphthindazol-4,9-chinonen als Antiparasitika. 31st October 2001, patent number: DE 100 20 812.6

  • Kayser O, Kiderlen A, Croft SL (2002) Natural Products as potential antiparasitic drugs. Studies in Natural Product Research, Atta-Ur-Rahman (eds.), 26:779–848

  • Khan AA, Nasr M, Araujo FG (1998) Two 2-hydroxy-3-alkyl-1,4-naphthoquinones with in vitro and in vivo activities against Toxoplasma gondii. Antimicrob Agents Chemother 42:2284–2289

    Google Scholar 

  • Kraft C, Jenett-Siems K, Köhler I, Tofern-Reblin B, Siems K, Bienzle U, Eich E (2002) Antiplasmodial activity of sesquilignans and sesquineolignans from Bonamia spectabilis. Phytochemistry 60:167–173

    Google Scholar 

  • König GM, Wright AD (1996) Marine natural products research: current directions and future potential. Planta Med 62:193–211

    Google Scholar 

  • Kirby GC, Paine A, Warhust DC, Noamese BK, Phillipson JD (1995) In vitro and in vivo antimalarial activity of cryptolepine, a plant-derivative indolquinoline. Phytother Res 9:359–363

    Google Scholar 

  • Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, Davidson E, Kurzban G, Miller GE, Nuzum EO, Rosenthal PJ, McKerrow JH (1995) In vitro antimalarial activity of chalcones and their derivatives. J Med Chem 38:5031–5037

    Google Scholar 

  • Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, Krungkrai J (1998) Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med 64:237–241

    Google Scholar 

  • Lopes JN, Cruz FS, Docampo R, Vasconcellos ME, Sampaio MC, Pinto AV, Gilbert B (1978) In vitro and in vivo evaluation of the toxicity of 1,4-naphthoquinone and 1,2-naphthoquinone derivatives against Trypanosoma cruzi. Ann Trop Med Parasitol 72:523–531

    Google Scholar 

  • Lopes NP, Chicaro P, Kato MJ, Albuquerque S, Yoshida M (1998) Flavonoids and lignans from Virola surinamensis twigs and their in vitro activity against Trypanosoma cruzi. Planta Med 64:667–668

    Google Scholar 

  • MacKinnon S, Durst T, Arnason JT, Angerhofer C, Pezzuto J, Sanchez-Vindas PE, Poveda LJ, Gbeassor M (1997) Antimalarial activity of tropical Meliaceae extracts and gedunin derivatives. J Nat Prod 60:336–341

    Google Scholar 

  • Nosten F, Brasseur P (2002) Combination therapy for malaria: the way forward? Drugs 62:1315–1329

    Google Scholar 

  • Oketch-Rabah HA, Dossaji SF, Christensen SB, Frydenvang K, Lemmich E, Cornett C, Olsen CE, Chen M, Kharazmi A, Theander T (1997) Antiprotozoal compounds from Asparagus africanus. J Nat Prod 60:1017–1022

    Google Scholar 

  • Perez-Victoria JM, Chiquero MJ, Conseil G, Dayan G, Di Pietro A, Barron D, Castanys S, Gamarro F (1999) Correlation between the affinity of flavonoids binding to the cytosolic site of Leishmania tropica multidrug transporter and their efficiency to revert parasite resistance to daunomycin. Biochemistry 38:1736–1743

    Google Scholar 

  • Phillipson JD (1991) Assays for antimalarial and amoebicidal activities. In: Dey DM, Harborne JB (eds) Methods in plant biochemistry, vol 6, Assays in bioactivity. Academic Press, London, pp 135–152

  • Phillipson JD, Wright CW (1991) Can ethnopharmacology contribute to the development of antimalarial agents? J Ethnopharmacol 32:155–165

    Google Scholar 

  • Phillipson J, Wright CW, Kirby GC, Warhust DC (1993) Tropical plants as sources of antiprotozoal agents. In: Downum KR, Romeo JR, Stafford HA (eds) Phytochemical potential of tropical plants, vol 27. Recent advances in phytochemistry. Plenum Press, New York, pp 1–40

  • Pinto CN, Dantas AP, De Moura KC, Emery FS, Polequevitch PF, Pinto MC, de Castro SL, Pinto AV (2000) Chemical reactivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy. Arzneimittelforschung 50:1120–1128

    Google Scholar 

  • Posner GH (1998) Antimalarial peroxides in the qinghaosu (artemisinin) and yingzhaosu families. Expert Opin Ther Targets 8:1487–1493

    Google Scholar 

  • Posner GH, Cumming JN, Woo S-H, Ploypradith P, Xie S, Shapiro TA (1998) Orally active antimalarial 3-substituted trioxanes: new synthetic methology and biological evaluation. J Med Chem 41:940–951

    Google Scholar 

  • Rayo Camacho Corona M, Croft SL, Phillipson JD (2000) Natural products as sources of antiprotozoal drugs. Curr Opin Anti-Infect Investig Drugs 2:47–62

    Google Scholar 

  • Ribeiro A, Pilo-Veloso D, Romanha AJ, Zani CL (1997) Trypanocidal flavonoids from Trixis vauthieri. J Nat Prod 60:836–841

    Google Scholar 

  • Sairafianpour M, Christensen J, Staerk D, Budnik BA, Kharazmi A, Bagherzadeh K, Jaroszewski JW (2001) Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1,2-quinones from Perovskia abrotanoides: new source of tanshinones. J Nat Prod. 64:1398–1403

    Google Scholar 

  • Tandon JS, Srivastava V, Guru PY (1991) Iridoids: a new class of leishmanicidal agents from Nyctanthes arbortristis. J Nat Prod 54:1102–1104

    Google Scholar 

  • Teixeira MJ, de Almeida YM, Viana JR, Holanda Filha JG, Rodrigues TP, Prata JRJr, Coelho IC, Rao VS, Pompeu MM (2001) In vitro and in vivo leishmanicidal activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol). Phytother Res 15:44–48

  • Thompson (1998) Experimental studies on lignans and cancer. Baillieres Clin Endocrinol Metab 12:691–1705

  • Vennerstrom JL, Lovelace JK, Waits VB, Hanson WL, Klayman DL (1990) Berberine derivatives as antileishmanial drugs. Antimicrob Agents Chemother, 34:918–921

  • Weiss CR, Moideen SV, Croft SL, Houghton PJ (2000) Activity of extracts and isolated naphthoquinones from Kigelia pinnata against Plasmodium falciparum. J Nat Prod 63:1306–1309

  • Wright CW, Allen D, Cai Y, Chen Z, Phillipson JD (1994) Selective antiprotozoal activity of some Strychnos alkaloids. Phytother Res 8:149–152

    Google Scholar 

  • Zhai L, Blom J, Chen M, Christensen BS, Kharazami A (1995) The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrob Agents Chemother 39:2742–2748

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kayser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayser, O., Kiderlen, A.F. & Croft, S.L. Natural products as antiparasitic drugs. Parasitol Res 90 (Suppl 2), S55–S62 (2003). https://doi.org/10.1007/s00436-002-0768-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-002-0768-3

Keywords

Navigation