Skip to main content
Log in

Association of adipokines with cardiovascular risk factors in low birth weight children: a case–control study

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Our aim was to investigate plasma levels of adiponectin, monocyte chemoattractant protein-1 (MCP-1) and plasminogen activator inhibitor-1 (PAI-1) in low birth weight (LBW) children and to determine correlations among these adipokines and birth weight and cardiovascular disease risk factors. In a case–control study, the concentrations of adiponectin, MCP-1 and PAI-1 were measured in 180 schoolchildren (ages 6–11 years). MCP-1 and PAI-1 levels were significantly elevated in LBW children. Conversely, adiponectin concentration was significantly reduced in these children. Similar findings were observed after adjustment for current age, gender and abdominal circumference. Because the children with LBW had altered adipokine levels, as well as higher abdominal circumference, HOMA-IR and systolic blood pressure (SBP), we evaluated the correlation among these variables. These analyses showed that adiponectin levels were inversely correlated with systolic blood pressure (SBP) (r = −0.501; P < 0.001), HOMA-IR (r = −0.293; P = 0.023) and waist circumference (r = −0.317; P = 0.014). The proinflammatory markers were positively correlated with HOMA-IR (PAI-1: r = 0.358; P = 0.005) and waist circumference (PAI-1: r = 0.571; P < 0.001 and MCP-1: r = 0.267; P = 0.039). Conclusion: Adipokines levels were correlated with cardiovascular risk factors in LBW children, and these compounds could be involved in the mechanism that links birth weight to the development of cardiovascular diseases in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessi MC, Poggi M, Juhan-Vogue I (2007) Plasminogen activator inibitor-1 adipose tissue and insulin resistence. Curr Opin Lipidol 18(3):240–245

    Article  PubMed  CAS  Google Scholar 

  2. Barker DJ (1999) The fetal origins of type 2 diabetes type 2 mellitus. Ann Intern Med 130:322–324

    PubMed  CAS  Google Scholar 

  3. Barker DJ, Bagby SP (2005) Developmental antecedents of cardiovascular disease: a historical perspective. J Am Soc Nephrol 16:2537–2544

    Article  PubMed  Google Scholar 

  4. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PMS (1993) Type 2 (non-insulin dependent) diabetes mellitus, hypertension and hyperlipidemia (syndrome X): relation to reduced fetal growth. Diabetologia 36:62–67

    Article  PubMed  CAS  Google Scholar 

  5. Berenson GS (2002) Childhood risk factors predict adult risk associated with subclinical cardiovascular disease. the Bogalusa Heart Study. Am J Cardiol 90:3L–7L

    Article  PubMed  Google Scholar 

  6. Boutsikou T, Mastorakos G, Kyriakakou M et al (2010) Circulating levels of inflammatory markers in intrauterine growth restriction. Mediat Inflamm. doi:10.1155/2010/790605

  7. Briana D, Malamitsi-Puchner A (2009) Intrauterine growth restriction and adult disease: the role of adipokines. Eur J Endocrinol 160:337–347

    Article  PubMed  CAS  Google Scholar 

  8. Bursztyn M, Ariel I (2006) Maternal-fetal deprivation and the cardiometabolic syndrome. J Cardiometab Syndr 1:141–145

    Article  PubMed  Google Scholar 

  9. Challa AS, Evangelidou EN, Cholevas VJ et al (2009) Growth factors and adipokines in prepubertal children born small for gestational age. Diabetes Care 32:714–719

    Article  PubMed  CAS  Google Scholar 

  10. Cianfarani S, Martinez C, Maiorana A et al (2004) Adiponectin levels are reduced in children born small for gestational age and are inversely related to postnatal catch-up growth. J Clin Endocrinol Metab 89:1346–1351

    Article  PubMed  CAS  Google Scholar 

  11. Cook JM, Semple RK (2010) Hypoadiponectinemia—cause or consequence of human “insulin resistance” ? J Clin Endocrinol Metab 95:1544–1554

    Article  PubMed  CAS  Google Scholar 

  12. De Las HJ, Bacha F, Tfayli H (2011) Cross-sectional association between blood pressure, in vivo insulin sensitivity and adiponectin in overweight adolescents. Horm Res Paediatr 76:379–385

    Article  Google Scholar 

  13. Franco MC, Christofalo DM, Sawaya AL, Sesso R (2006) Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension 48:45–50

    Article  PubMed  CAS  Google Scholar 

  14. Franco MC, Higa EM, D’Almeida V, Sesso R (2007) Homocysteine and nitric oxide are related to blood pressure and vascular function in small-for-gestational-age children. Hypertension 50:396–402

    Article  PubMed  CAS  Google Scholar 

  15. Friedewald WT, Levy RI, Frederickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preoperative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  16. Fukami A, Sho-ichi Y, Hisashi A et al (2011) High white blood cell count and low estimated glomerular filtration rate are independently associated with serum level of monocyte chemoattractant protein-1 in a general population. Clin Cardiol 34(3):189–194

    Article  PubMed  Google Scholar 

  17. Giordano P, Del Vecchio GC, Cecinati V et al (2011) Metabolic, inflammatory, endothelial and haemostatic markers in a group of Italian obese children and adolescents. Eur J Pediatr 170(7):845–850

    Article  PubMed  CAS  Google Scholar 

  18. Gluckman PD, Hanson MA, Buklijas T (2010) A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis 1:6–18

    Article  CAS  Google Scholar 

  19. Huxley R, Owen CG, Whincup PH et al (2007) Is birth weight a risk factor for ischemic heart disease in later life? Am J Clin Nutr 85(5):1244–1250

    PubMed  CAS  Google Scholar 

  20. Ibanez L, Lopez-Bernejo A, Marcos MV et al (2008) Visceral adiposity without overweight in children born small for gestational age. J Clin Endocrinol Metab 93(6):2079–2083

    Article  PubMed  CAS  Google Scholar 

  21. Kamoda T, Saitoh H, Saito M et al (2004) Serum adiponectin concentrations in newborn infants in early postnatal life. Pediatr Res 56:690–693

    Article  PubMed  CAS  Google Scholar 

  22. Kaur S, Panicker SR, James T (2009) Association of monocyte chemoattractant protein-1-2518 polymorphism with metabolic syndrome in a South Indian cohort. Metab Syndr Relat Disord 7:193–198

    Article  PubMed  CAS  Google Scholar 

  23. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  PubMed  CAS  Google Scholar 

  24. Keskin M, Kurtoglu S, Kendirci M et al (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115(4):500–503

    Article  Google Scholar 

  25. Körner A, Kratzsch J, Gausche R et al (2007) New predictors of the metabolic syndrome in children—role of adipocytokines. Pediatr Res 61:640–645

    Article  PubMed  Google Scholar 

  26. Labayen I, Ortega FB, Sjistrom M, Ruiz JR (2009) Early life origins of low-grade inflammation and atherosclerosis risk in children and adolescents. J Pediatr 155:673–677

    Article  PubMed  CAS  Google Scholar 

  27. Lambert M, O’Loughlin J, Delvin EE (2009) Association between insulin, leptin, adiponectin and blood pressure in youth. J Hypertens 27:1025–1032

    Article  PubMed  CAS  Google Scholar 

  28. Lau DC, Dhillon B, Yan H (2005) Adipokines: molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041

    Article  PubMed  CAS  Google Scholar 

  29. Leeson CPM, Kattenhorn M, Morley R (2001) Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 103:1264–1268

    Article  PubMed  CAS  Google Scholar 

  30. Levy-Marchal C, Jaquet D, Czernichow P (2004) Long-term metabolic consequences of being born small for gestational age. Semin Neonatol 9:67–74

    Article  PubMed  Google Scholar 

  31. López-Bernejo A, Casano-Sancho P (2007) Insulin resistance after precocious pubarche: relation to PAI-1-675 4G/5G polymorphism, and opposing influences of prenatal and postnatal weight gain. Clin Endocrinol (Oxf) 67:493–499

    Google Scholar 

  32. Maiorana A, Del Bianco C, Cianfarani S (2007) Adipose tissue: a metabolic regulator, potential implications for the metabolic outcome of subjects born small for gestacional age (SGA). Rev Diabet Stud 4:134–146

    Article  PubMed  Google Scholar 

  33. Martin H, Hu J, Gennser G (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birth weight. Circulation 102:2739–2744

    Article  PubMed  CAS  Google Scholar 

  34. Matheus DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  Google Scholar 

  35. Meas T, Deghmoun S, Chevenne D (2010) Plasminogen activator inhibitor type-1 is an independent marker of metabolic disorders in young adults born small for gestational age. J Thromb Haemost 12:2608–2613

    Article  Google Scholar 

  36. Muhlhausler B, Smith SR (2008) Early-life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrinol Metab 20(2):51–57

    PubMed  Google Scholar 

  37. National High Blood Pressure Education priogram Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evalution, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576

    Article  Google Scholar 

  38. Riestra P, García-Anguita A, Lasunción MA (2011) Relationship of adiponectin with metabolic syndrome components in pubertal children. Atherosclerosis 216:467–470

    Article  PubMed  CAS  Google Scholar 

  39. Sattar N, McConnachie A, O’Reilly D et al (2004) Inverse association between birth weight and C-reative protein concentrations in the MIDSPAN Family Study. Arterioscler Thromb Vasc Biol 24:583–587

    Article  PubMed  CAS  Google Scholar 

  40. Shatat IF, Freeman KD, Vuguin PM (2009) Relationship between adiponectin and ambulatory blood pressure in obese adolescents. Pediatr Res 65:691–695

    Article  PubMed  CAS  Google Scholar 

  41. Strufaldi MWL, Silva EMK, Puccini RF (2008) Metabolic syndrome among prepubertal Brazilian schoolchildren. Diab Vasc Dis Res 5(4):291–297

    Article  PubMed  Google Scholar 

  42. Winer JC, Zern TL, Taksali SE (2006) Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J Clin Endocrinol Metab 91:4415–4423

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H, Cui J, Zhang C (2010) Emerging role of adipokiness as mediators in atherosclerosis. World J Cardiol 2(11):370–376

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research has been supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil). Project numbers 08/58963-0 (MWLS) and 07/58044-2 (MCPF).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Wany Louzada Strufaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strufaldi, M.W.L., Puccini, R.F., Silvério, O.M.A. et al. Association of adipokines with cardiovascular risk factors in low birth weight children: a case–control study. Eur J Pediatr 172, 71–76 (2013). https://doi.org/10.1007/s00431-012-1846-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-012-1846-x

Keywords

Navigation