Skip to main content
Log in

Aging and response conflict solution: behavioural and functional connectivity changes

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Healthy aging has been found associated with less efficient response conflict solution, but the cognitive and neural mechanisms have remained elusive. In a two-experiment study, we first examined the behavioural consequences of this putative age-related decline for conflicts induced by spatial stimulus–response incompatibility. We then used resting-state functional magnetic resonance imaging data from a large, independent sample of adults (n = 399; 18–85 years) to investigate age differences in functional connectivity between the nodes of a network previously found associated with incompatibility-induced response conflicts in the very same paradigm. As expected, overcoming interference from conflicting response tendencies took longer in older adults, even after accounting for potential mediator variables (general response speed and accuracy, motor speed, visuomotor coordination ability, and cognitive flexibility). Experiment 2 revealed selective age-related decreases in functional connectivity between bilateral anterior insula, pre-supplementary motor area, and right dorsolateral prefrontal cortex. Importantly, these age effects persisted after controlling for regional grey-matter atrophy assessed by voxel-based morphometry. Meta-analytic functional profiling using the BrainMap database showed these age-sensitive nodes to be more strongly linked to highly abstract cognition, as compared with the remaining network nodes, which were more strongly linked to action-related processing. These findings indicate changes in interregional coupling with age among task-relevant network nodes that are not specifically associated with conflict resolution per se. Rather, our behavioural and neural data jointly suggest that healthy aging is associated with difficulties in properly activating non-dominant but relevant task schemata necessary to exert efficient cognitive control over action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935. doi:10.1016/j.neuron.2007.10.038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    PubMed  Google Scholar 

  • Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 22:229–244

    CAS  PubMed  Google Scholar 

  • Behrwind SD, Dafotakis M, Halfter S, Hobusch K, Berthold-Losleben M, Cieslik EC, Eickhoff SB (2011) Executive control in chronic schizophrenia: a perspective from manual stimulus–response compatibility task performance. Behav Brain Res 223:24–29. doi:10.1016/j.bbr.2011.04.009

    PubMed Central  PubMed  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11:80–93

    CAS  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    CAS  PubMed  Google Scholar 

  • Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739. doi:10.1073/pnas.0911855107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonin-Guillaume S, Possamai CA, Blin O, Hasbroucq T (2000) Stimulus preprocessing, response selection, and motor adjustment in the elderly: an additive factor analysis. Cah Psychol Cogn 19:245–255

    Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. doi:10.1196/annals.1440.011

    PubMed  Google Scholar 

  • Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R, Eickhoff SB (2012) Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct 217:783–796

    PubMed Central  PubMed  Google Scholar 

  • Bzdok D, Langner R, Schilbach L, Engemann DA, Laird AR, Fox PT, Eickhoff SB (2013a) Segregation of the human medial prefrontal cortex in social cognition. Front Hum Neurosci 7:232. doi:10.3389/fnhum.2013.00232

    PubMed Central  PubMed  Google Scholar 

  • Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Laird AR, Fox PT, Zilles K, Eickhoff SB (2013b) Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81:381–392

    PubMed  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100

    PubMed  Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448

    PubMed  Google Scholar 

  • Chen NK, Chou YH, Song AW, Madden DJ (2009) Measurement of spontaneous signal fluctuations in fMRI: adult age differences in intrinsic functional connectivity. Brain Struct Funct 213:571–585. doi:10.1007/s00429-009-0218-4

    PubMed Central  PubMed  Google Scholar 

  • Cieslik EC, Zilles K, Kurth F, Eickhoff SB (2010) Dissociating bottom-up and top-down processes in a manual stimulus–response compatibility task. J Neurophysiol 104:1472–1483

    PubMed Central  PubMed  Google Scholar 

  • Cieslik EC, Zilles K, Grefkes C, Eickhoff SB (2011) Dynamic interactions in the fronto-parietal network during a manual stimulus–response compatibility task. Neuroimage 58:860–869. doi:10.1016/j.neuroimage.2011.05.089

    PubMed  Google Scholar 

  • Cieslik EC, Müller VI, Kellermann TS, Grefkes C, Halfter S, Eickhoff SB (2013a) Shifted neuronal balance during stimulus–response integration in schizophrenia: an fMRI study. Brain Struct Funct [Advance online publication]. doi:10.1007/s00429-013-0652-1

  • Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, Jakobs O, Langner R, Laird AR, Fox PT, Eickhoff SB (2013b) Is there “one” DLPFC in cognitive action control? Evidence for heterogeneity from co-activation-based parcellation. Cereb Cortex 23:2677–2689. doi:10.1093/cercor/bhs256

    PubMed Central  PubMed  Google Scholar 

  • Cisek P (2006) Integrated neural processes for defining potential actions and deciding between them: a computational model. J Neurosci 26:9761–9770. doi:10.1523/JNEUROSCI.5605-05.2006

    CAS  PubMed  Google Scholar 

  • Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB (2013) Tackling the multifunctional nature of Broca’s region meta-analytically: co-activation-based parcellation of area 44. Neuroimage 83:174–188. doi:10.1016/j.neuroimage.2013.06.041

    PubMed  Google Scholar 

  • Cole MW, Schneider W (2007) The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 37:343–360. doi:10.1016/j.neuroimage.2007.03.071

    PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215. doi:10.1038/nrn755

    CAS  PubMed  Google Scholar 

  • Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324. doi:10.1016/j.neuron.2008.04.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Craik FIM, Salthouse TA (2008) The handbook of aging and cognition. Psychology Press, New York

    Google Scholar 

  • Dafotakis M, Grefkes C, Eickhoff SB, Karbe H, Fink GR, Nowak DA (2008) Effects of rTMS on grip force control following subcortical stroke. Exp Neurol 211:407–412. doi:10.1016/j.expneurol.2008.02.018

    PubMed  Google Scholar 

  • Defer GL, Widner H, Marie RM, Remy P, Levivier M (1999) Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord 14:572–584

    CAS  PubMed  Google Scholar 

  • Dennis NA, Cabeza R (2008) Neuroimaging of healthy cognitive aging. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition. Lawrence Erlbaum, London, pp 1–54

    Google Scholar 

  • Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812. doi:10.1016/j.neuron.2006.04.031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078. doi:10.1073/pnas.0704320104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011a) Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57:938–949

    PubMed Central  PubMed  Google Scholar 

  • Eickhoff SB, Pomjanski W, Jakobs O, Zilles K, Langner R (2011b) Neural correlates of developing and adapting behavioural biases in speeded choice reactions: an fMRI study on predictive motor coding. Cereb Cortex 21:1178–1191. doi:10.1093/cercor/bhq188

    PubMed  Google Scholar 

  • Ferreira LK, Busatto GF (2013) Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 37:384–400. doi:10.1016/j.neubiorev.2013.01.017

    PubMed  Google Scholar 

  • Fitts PM, Deininger RL (1954) S-R compatibility: correspondence among paired elements within stimulus and response codes. J Exp Psychol 48:483–492. doi:10.1037/H0054967

    CAS  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711. doi:10.1038/nrn2201

    CAS  PubMed  Google Scholar 

  • Fox PT, Laird AR, Fox SP, Fox PM, Uecker AM, Crank M, Koenig SF, Lancaster JL (2005) BrainMap taxonomy of experimental design: description and evaluation. Hum Brain Mapp 25:185–198

    PubMed  Google Scholar 

  • Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051. doi:10.1073/pnas.0604187103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56:171–184. doi:10.1016/j.neuron.2007.08.023

    CAS  PubMed  Google Scholar 

  • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283. doi:10.1152/jn.90777.2008

    PubMed Central  PubMed  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174:1–89

    CAS  Google Scholar 

  • Goh JO (2011) Functional dedifferentiation and altered connectivity in older adults: neural accounts of cognitive aging. Aging Dis 2:30–48

    PubMed Central  PubMed  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36. doi:10.1006/nimg.2001.0786

    CAS  PubMed  Google Scholar 

  • Grady CL (2005) Functional connectivity during memory tasks in healthy aging and dementia. In: Cabeza R, Nyberg L, Park DC (eds) Cognitive neuroscience of aging: linking cognitive and cerebral aging. Oxford University Press, Oxford, pp 286–308

    Google Scholar 

  • Grady CL (2008) Cognitive neuroscience of aging. Ann N Y Acad Sci 1124:127–144. doi:10.1196/annals.1440.009

    PubMed  Google Scholar 

  • Grandjean J, Collette F (2011) Influence of response prepotency strength, general working memory resources, and specific working memory load on the ability to inhibit predominant responses: a comparison of young and elderly participants. Brain Cogn 77:237–247. doi:10.1016/j.bandc.2011.08.004

    PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258. doi:10.1073/pnas.0135058100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffstaedter F, Grefkes C, Roski C, Caspers S, Zilles K, Eickhoff SB (2014) Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation. Brain Struct Funct [Advance online publication]. doi:10.1007/s00429-013-0696-2

  • Hommel B, Prinz W (1997) Theoretical issues in stimulus–response compatibility. North-Holland, Amsterdam

    Google Scholar 

  • Hoshi E, Tanji J (2006) Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J Neurophysiol 95:3596–3616. doi:10.1152/jn.01126.2005

    PubMed  Google Scholar 

  • Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. Neuroimage 60:2389–2398. doi:10.1016/j.neuroimage.2012.02.037

    PubMed Central  PubMed  Google Scholar 

  • Kessler J, Fast K, Mielke R (1995) Zur Problematik der prämorbiden Intelligenzdiagnostik mit dem MWT-B bei Patienten mit Alzheimer-Erkrankung [Premorbid intelligence diagnosis with the MWT-B (Multiple-Choice Word Test-B) in patients with Alzheimer’s disease]. Nervenarzt 66:696–702

    CAS  PubMed  Google Scholar 

  • Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, Koch I (2010) Control and interference in task switching—a review. Psychol Bull 136:849–874. doi:10.1037/a0019842

    PubMed  Google Scholar 

  • Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214:519–534

    PubMed  Google Scholar 

  • Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT (2009) ALE meta-analysis workflows via the Brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:23. doi:10.3389/neuro.11.023.2009

    PubMed Central  PubMed  Google Scholar 

  • Langner R, Eickhoff SB (2013) Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychol Bull 139:870–900. doi:10.1037/a0030694

    PubMed Central  PubMed  Google Scholar 

  • Langner R, Eickhoff SB, Steinborn MB (2011a) Mental fatigue modulates dynamic adaptation to perceptual demand in speeded detection. PLoS One 6:e28399. doi:10.1371/journal.pone.0028399

    PubMed Central  CAS  PubMed  Google Scholar 

  • Langner R, Kellermann T, Boers F, Sturm W, Willmes K, Eickhoff SB (2011b) Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices. Cereb Cortex 21:2850–2862. doi:10.1093/cercor/bhr083

    PubMed  Google Scholar 

  • Langner R, Kellermann T, Eickhoff SB, Boers F, Chatterjee A, Willmes K, Sturm W (2012) Staying responsive to the world: Modality-specific and -nonspecific contributions to speeded auditory, tactile, and visual stimulus detection. Hum Brain Mapp 33:398–418. doi:10.1002/hbm.21220

    PubMed  Google Scholar 

  • Langner R, Sternkopf MA, Kellermann TS, Grefkes C, Kurth F, Schneider F, Zilles K, Eickhoff SB (2013) Translating working memory into action: Behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences. Hum Brain Mapp [Advance online publication]. doi:10.1002/hbm.22415

  • Lee TM, Zhang JX, Chan CC, Yuen KS, Chu LW, Cheung RT, Chan YS, Fox PT, Gao JH (2006) Age-related differences in response regulation as revealed by functional MRI. Brain Res 1076:171–176. doi:10.1016/j.brainres.2005.12.124

    CAS  PubMed  Google Scholar 

  • Lehrl S (2005) Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B) [Multiple-Choice Vocabulary Test-B], 5th edn. Spitta, Balingen

    Google Scholar 

  • Logan GD (2007) What it costs to implement a plan: plan-level and task-level contributions to switch costs. Mem Cognit 35:591–602

    PubMed  Google Scholar 

  • Los SA (1996) On the origin of mixing costs: exploring information processing in pure and mixed blocks of trials. Acta Psychol 94:145–188

    Google Scholar 

  • Madden DJ, Costello MC, Dennis NA, Davis SW, Shepler AM, Spaniol J, Bucur B, Cabeza R (2010) Adult age differences in functional connectivity during executive control. Neuroimage 52:643–657. doi:10.1016/j.neuroimage.2010.04.249

    PubMed Central  PubMed  Google Scholar 

  • Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumoto E, Misaki M, Miyauchi S (2004) Neural mechanisms of spatial stimulus–response compatibility: the effect of crossed-hand position. Exp Brain Res 158:9–17. doi:10.1007/s00221-004-1872-7

    PubMed  Google Scholar 

  • Mayr U, Liebscher T (2001) Is there an age deficit in the selection of mental sets? Eur J Cognit Psychol 13:47–69

    Google Scholar 

  • Müller VI, Habel U, Derntl B, Schneider F, Zilles K, Turetsky BI, Eickhoff SB (2011) Incongruence effects in crossmodal emotional integration. Neuroimage 54:2257–2266. doi:10.1016/j.neuroimage.2010.10.047

    PubMed  Google Scholar 

  • Müller VI, Cieslik EC, Turetsky BI, Eickhoff SB (2012) Crossmodal interactions in audiovisual emotion processing. Neuroimage 60:553–561. doi:10.1016/j.neuroimage.2011.12.007

    PubMed  Google Scholar 

  • Onoda K, Ishihara M, Yamaguchi S (2012) Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci 24:2186–2198

    PubMed  Google Scholar 

  • Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196. doi:10.1146/annurev.psych.59.103006.093656

    PubMed Central  PubMed  Google Scholar 

  • Park DC, Schwarz N (2000) Cognitive aging: a primer. Psychology Press, Philadelphia

    Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. doi:10.1146/annurev.ne.13.030190.000325

    CAS  PubMed  Google Scholar 

  • Proctor RW, Vu KP, Pick DF (2005) Aging and response selection in spatial choice tasks. Hum Factors 47:250–270

    PubMed  Google Scholar 

  • Reitan RM (1955) The relation of the trail making test to organic brain damage. J Consult Psychol 19:393–394

    CAS  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci 17:177–182. doi:10.1111/j.1467-8721.2008.00570.x

    Google Scholar 

  • Roski C, Caspers S, Langner R, Laird AR, Fox PT, Zilles K, Amunts K, Eickhoff SB (2013a) Adult age-dependent differences in resting-state connectivity within and between visual-attention and sensorimotor networks. Front Aging Neurosci 5:67. doi:10.3389/fnagi.2013.00067

    PubMed Central  PubMed  Google Scholar 

  • Roski C, Caspers S, Lux S, Hoffstaedter F, Bergs R, Amunts K, Eickhoff SB (2013b) Activation shift in elderly subjects across functional systems: an fMRI study. Brain Struct Funct [Advance online publication]. doi:10.1007/s00429-013-0530-x

  • Rottschy C, Caspers S, Roski C, Reetz K, Dogan I, Schulz JB, Zilles K, Laird AR, Fox PT, Eickhoff SB (2013) Differentiated parietal connectivity of frontal regions for “what” and “where” memory. Brain Struct Funct 218:1551–1567. doi:10.1007/s00429-012-0476-4

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salthouse TA (1991) Theoretical perspectives on cognitive aging. Erlbaum, Hillsdale

    Google Scholar 

  • Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103:403–428

    CAS  PubMed  Google Scholar 

  • Salthouse TA (2011) Neuroanatomical substrates of age-related cognitive decline. Psychol Bull 137:753–784. doi:10.1037/a0023262

    PubMed Central  PubMed  Google Scholar 

  • Sánchez-Cubillo I, Perianez JA, Adrover-Roig D, Rodriguez-Sánchez JM, Rios-Lago M, Tirapu J, Barcelo F (2009) Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc 15:438–450. doi:10.1017/S1355617709090626

    PubMed  Google Scholar 

  • Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. doi:10.1016/j.neuroimage.2012.08.052

    PubMed  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867

    PubMed  Google Scholar 

  • Schilbach L, Bzdok D, Timmermans B, Fox PT, Laird AR, Vogeley K, Eickhoff SB (2012) Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition. PLoS One 7:e30920

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schulte T, Müller-Oehring EM, Chanraud S, Rosenbloom MJ, Pfefferbaum A, Sullivan EV (2011) Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study. Neurobiol Aging 32:2075–2090. doi:10.1016/j.neurobiolaging.2009.12.002

    PubMed Central  PubMed  Google Scholar 

  • Schumacher EH, Elston PA, D’Esposito M (2003) Neural evidence for representation-specific response selection. J Cogn Neurosci 15:1111–1121. doi:10.1162/089892903322598085

    PubMed  Google Scholar 

  • Shallice T, Stuss DT, Alexander MP, Picton TW, Derkzen D (2008) The multiple dimensions of sustained attention. Cortex 44:794–805. doi:10.1016/j.cortex.2007.04.002

    PubMed  Google Scholar 

  • Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks. 2. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663

    CAS  PubMed  Google Scholar 

  • Simon JR, Wolf JD (1963) Choice reaction-time as a function of angular stimulus–response correspondence and age. Ergonomics 6:99–105. doi:10.1080/00140136308930679

    Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045. doi:10.1073/pnas.0905267106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smulders FT, Kenemans JL, Schmidt WF, Kok A (1999) Effects of task complexity in young and old adults: reaction time and P300 latency are not always dissociated. Psychophysiology 36:118–125

    CAS  PubMed  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. doi:10.1038/nn1008

    CAS  PubMed  Google Scholar 

  • Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574. doi:10.1073/pnas.0800005105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steinborn MB, Langner R (2011) Distraction by irrelevant sound during foreperiods selectively impairs temporal preparation. Acta Psychol (Amst) 136:405–418. doi:10.1016/j.actpsy.2011.01.008

    Google Scholar 

  • Steinborn MB, Langner R (2012) Arousal modulates temporal preparation under increased time uncertainty: evidence from higher-order sequential foreperiod effects. Acta Psychol (Amst) 139:65–76. doi:10.1016/j.actpsy.2011.10.010

    Google Scholar 

  • Stevens MC (2009) The developmental cognitive neuroscience of functional connectivity. Brain Cogn 70:1–12. doi:10.1016/j.bandc.2008.12.009

    PubMed  Google Scholar 

  • Stuss DT, Shallice T, Alexander MP, Picton TW (1995) A multidisciplinary approach to anterior attentional functions. Ann N Y Acad Sci 769:191–211

    CAS  PubMed  Google Scholar 

  • Sylvester CY, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370

    PubMed  Google Scholar 

  • Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30:2731–2745. doi:10.1002/hbm.20705

    PubMed  Google Scholar 

  • Toro R, Fox PT, Paus T (2008) Functional coactivation map of the human brain. Cereb Cortex 18:2553–2559. doi:10.1093/cercor/bhn014

    PubMed Central  PubMed  Google Scholar 

  • Turner GR, Spreng RN (2012) Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiol Aging 33:826 e1–826 e13. doi:10.1016/j.neurobiolaging.2011.06.005

    Google Scholar 

  • Verhaeghen P (2011) Aging and executive control: reports of a demise greatly exaggerated. Curr Dir Psychol Sci 20:174–180. doi:10.1177/0963721411408772

    PubMed Central  Google Scholar 

  • Verhaeghen P, Steitz DW, Sliwinski MJ, Cerella J (2003) Aging and dual-task performance: a meta-analysis. Psychol Aging 18:443–460. doi:10.1037/0882-7974.18.3.443

    PubMed  Google Scholar 

  • Vu KP, Proctor RW (2008) Age differences in response selection for pure and mixed stimulus–response mappings and tasks. Acta Psychol 129:49–60. doi:10.1016/j.actpsy.2008.04.006

    Google Scholar 

  • Wasylyshyn C, Verhaeghen P, Sliwinski MJ (2011) Aging and task switching: a meta-analysis. Psychol Aging 26:15–20. doi:10.1037/a0020912

    PubMed Central  PubMed  Google Scholar 

  • Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2:1329–1345

    CAS  PubMed  Google Scholar 

  • Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47:1408–1416. doi:10.1016/j.neuroimage.2009.05.005

    PubMed  Google Scholar 

  • Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9:971–978

    CAS  PubMed  Google Scholar 

  • Wu T, Zang Y, Wang L, Long X, Hallett M, Chen Y, Li K, Chan P (2007) Aging influence on functional connectivity of the motor network in the resting state. Neurosci Lett 422:164–168. doi:10.1016/j.neulet.2007.06.011

    CAS  PubMed  Google Scholar 

  • Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6:15–28. doi:10.1038/nrneurol.2009.198

    PubMed  Google Scholar 

  • Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC, Zang YF, Castellanos FX, Milham MP (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30:15034–15043. doi:10.1523/JNEUROSCI.2612-10.2010

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was in part supported by the Human Brain Project (R01-MH074457-01A1, S.B.E.), the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model, S.B.E), the Helmholtz Alliance for Mental Health in an Aging Society (HelMA, K.A.), and the German Research Foundation (DFG: EI 816/4-1, S.B.E.; and LA 3071/3-1, R.L. & S.B.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Langner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2014_758_MOESM1_ESM.pdf

Online Resource 1 Supplementary results of the quantitative functional profiling (Fig. S1) and the connectivity analysis in an emotion-related control network (Table S1). (PDF 111 kb) (PDF 111 kb)

Online Resource 2 Supplementary methods of the exploratory whole-brain connectivity analysis. (PDF 102 kb)

429_2014_758_MOESM3_ESM.pdf

Online Resource 3 Supplementary methods of the voxel-based morphometry analysis and the control analysis for the influence of morphological parameters on functional connectivity. (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langner, R., Cieslik, E.C., Behrwind, S.D. et al. Aging and response conflict solution: behavioural and functional connectivity changes. Brain Struct Funct 220, 1739–1757 (2015). https://doi.org/10.1007/s00429-014-0758-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0758-0

Keywords

Navigation