Skip to main content
Log in

Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A 3D model of the tracheid wall has been proposed based on high-resolution cryo-TEM where, in contrast to the current understanding, the cellulose elementary fibrils protrude from the cell wall plane.

The ultrastructure of the tracheid walls of Picea abies was examined through imaging of ultrathin radial, tangential and transverse sections of wood by transmission electron microscopy and with digital image processing. It was found that the elementary fibrils (EFs) of cellulose were rarely deposited in the plane of the concentric cell wall layers, in contrast to the current understanding. In addition to the adopted concept of longitudinal fibril angle, EFs protruded from the cell wall plane in varying angles depending on the layer. Moreover, the out-of-plane fibril angle varied between radial and tangential walls. In the tangential S2 layers, EFs were always out-of-plane whereas planar orientation was typical for the S2 layer in radial walls. The pattern of protruding EFs was evident in almost all axial and transverse images of the S1 layer. Similar out-of-plane orientation was found in the transverse sections of the S3 layer. A new model of the tracheid wall with EF orientation is presented as a summary of this study. The outcome of this study will enhance our understanding of the elementary fibril orientation in the tracheid wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe H, Funada R (2005) Review-The orientation of cellulose microfibrils in the cell walls of tracheids in conifers. IAWA J 26(2):161–174

    Article  Google Scholar 

  • Abe H, Ohtani J, Fukazawa K (1991) FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bull ns 12:431–438

    Google Scholar 

  • Abe H, Ohtani J, Fukazawa K (1992) Microfibrillar orientation of the innermost surface of conifer tracheid walls. IAWA Bull ns 13:411–417

    Google Scholar 

  • Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969

    Article  Google Scholar 

  • Atalla RH, Hackney JM, Uhlin I, Thompson NS (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol 15(2):109–112

    Article  CAS  PubMed  Google Scholar 

  • Bailey IW (1938) Cell wall structure of higher plants. Ind Eng Chem 30:40–47

    Article  CAS  Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibers. Biol Rev 79:461–472

    Article  CAS  PubMed  Google Scholar 

  • Bergander A, Salmén L (2000) Variations in transverse fiber wall properties: relations between elastic properties and structure. Holzforschung 54:654–660

    Article  CAS  Google Scholar 

  • Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156

    Article  CAS  Google Scholar 

  • Bland DE, Foster RC, Logan AF (1971) The mechanism of permanganate and osmium tetroxide fixation and the distribution of lignin in the cell wall of Pinus radiata. Hozforschung 25(5):137–143

    Article  CAS  Google Scholar 

  • Brändström J (2001) Micro- and ultrastructural aspects of Norway spruce tracheids: a review. IAWA J 22(4):333–353

    Article  Google Scholar 

  • Brändström J, Bardage SL, Daniel G, Nilsson T (2003) The structural organization of the S1 cell wall layer of Norway spruce tracheids. IAWA J 1:27–40

    Article  Google Scholar 

  • Chafe SC (1974) On the lamellate structure of the S2 layer. Protoplasma 79:145–158

    Article  Google Scholar 

  • Côté WA (1981) Ultrastructure-critical domain for wood behavior. Wood Sci Technol 15(1):1–29

    Article  Google Scholar 

  • Daniel G (2007) Wood and fiber morphology. In: Ek M, Gellerstedt G, Henriksson G (eds) Ljungberg textbook: pulp and paper technology. Fiber and polymer technology. KTH, Sweden, pp 49–71

    Google Scholar 

  • Donaldson LA (1991) The use of pit apertures as windows to measure microfibril angle in chemical pulp fibers. Wood Fiber Sci 23:290–295

    CAS  Google Scholar 

  • Donaldson LA (1992) Within and between tree variation in microfibril angle in Pinus radiata. NZ J For Sci 221:77–86

    Google Scholar 

  • Donaldson LA (1995) Cell wall fracture properties in relation to lignin distribution among three genetic groups of Radiata pine. Wood Sci Technol 29:51–63

    Article  CAS  Google Scholar 

  • Donaldson LA (2001) A three-dimensional computer model of the tracheid cell wall as a tool for interpretations of wood cell wall ultrastructure. IAWA J 22:213–233

    Article  Google Scholar 

  • Donaldson LA (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41(5):443–460

    Article  CAS  Google Scholar 

  • Donaldson LA (2008) Microfibril angle: measurement, variation and relationships—a review. IAWA J 29(4):345–386

    Article  Google Scholar 

  • Donaldson LA, Xu P (2005) Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees 19:644–653

    Article  Google Scholar 

  • Duchesne I, Hult EL, Molin U et al (2001) The effects of hemicellulose on fibril aggregation of Kraft pulp fibres as revealed by FE-SEM and CP/MAS 13CNMR. Cellulose 8:103–111

    Article  CAS  Google Scholar 

  • Emerton HW, Goldsmith V (1956) The structure of the outer secondary wall of pine tracheids from Kraft pulps. Holzforschung 10:108–115

    CAS  Google Scholar 

  • Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4:339–345

    Article  Google Scholar 

  • Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  PubMed  Google Scholar 

  • Fengel D, Wegener G (1984) Wood chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Google Scholar 

  • Frey-Wyssling A (1959) Die pflanzliche Zellwand. Springer, Berlin, Göttingen, Heidelberg

    Book  Google Scholar 

  • Frey-Wyssling A (1968) The ultrastructure of wood. Wood Sci Technol 2:73–83

    Article  Google Scholar 

  • Fromm J, Rockel B, Lautner S et al (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143:77–84

    Article  CAS  PubMed  Google Scholar 

  • Gatan I (1999) DigitalMicrograph 34 User’s Guide. Gatan Inc, California

    Google Scholar 

  • Gierlinger N, Luss S, König C, Konnerth J, Eder M, Fratzl P (2010) Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J Exp Bot 61:587–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanna RB (1971) The interpretation of high resolution electron micrographs of the cellulose elementary fibril. J Polym Sci (C) 36:409–413

    Google Scholar 

  • Harada H (1965) Ultrastructure of angiosperm, vessels and ray parenchyma. In: Côté WAJ (ed) Cellular ultrastructure of woody plants. Syracuse University Press,  NY, USA, pp 235–249

    Google Scholar 

  • Hodge AJ, Wardrop AB (1950) An electron-microscopic investigation of the cell-wall organisation of conifer tracheids. Nature 165:272–273

    Article  CAS  PubMed  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose aggregation—an inherent property of Kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Jacob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  Google Scholar 

  • Kerr AJ, Goring DAI (1975) Ultrastructural arrangement of the wood cell wall. Cellul Chem Technol 9:563–573

    Google Scholar 

  • Larsen MJ, Winandy JE, Green F (1995) A proposed model of the tracheid cell wall of southern yellow pine having an inherent radial structure in the S2 layer. Mater Org 29(3):197–210

    Google Scholar 

  • Ma J, Zhang Z, Yang G et al (2011) Ultrastructural topochemistry of cell wall polymers in Populus nigra by transmission electron microscopy and Raman imaging. BioResources 6(4):3944–3959

    CAS  Google Scholar 

  • Manley RSJ (1964) Fine structure of native cellulose microfibrils. Nature 204:1155–1157

    Article  Google Scholar 

  • Maurer A, Fengel D (1991) Elektronenmikroskopische Darstellung von strukturellen Einzelheiten in Nadelholz-Zellwänden anhand sehr dünner Ultramikrotomschnitte. Holz Roh- Werkst 49:53–56

    Article  CAS  Google Scholar 

  • Meier H (1955) Über den Zellwandabbau durch Holzvermorschungspilze und die submikroskopische struktur von Fichtentracheiden and Birkenholzfasern. Holz Roh- Werkst 13:323–338

    Article  CAS  Google Scholar 

  • Nakano T (2003) Effects of cell structure on water sorption for wood. Holzforschung 57:213–218

    CAS  Google Scholar 

  • Paakkari T, Serimaa R (1984) A study of the structure of wood cells by X-ray diffraction. Wood Sci Technol 18:79–85

    Google Scholar 

  • Page DH (1969) A method for determining fibrillar angle in wood tracheids. J R Microsc Soc 90:137–143

    Article  Google Scholar 

  • Pleasants S, Batchelor WJ, Parker IH (1998) Measuring the fibril angle of bleached fibres using micro-Raman spectroscopy. Appita J 51:373

    CAS  Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman & Hill, London

    Google Scholar 

  • Preston RD, Nicolai E, Reed R, Millard A (1948) An electron microscope study of cellulose in the wall of Valonia ventricosa. Nature 162:665–667

    Article  CAS  PubMed  Google Scholar 

  • Reza M, Engelhardt P (2012) 3-D reconstruction of cellulose nano-particles in Norway spruce (Picea abies) wood sections. In: Proceedings of the 3rd international cellulose conference Sapporo, Japan

  • Russ JC (2011) The image processing handbook, 6th edn. Taylor & Francis Group,  FL, USA, pp 391–393

    Google Scholar 

  • Salmén L, Fahlén J (2006) Reflection on the ultrastructure of softwood fibers. Cellul Chem Technol 40:181–185

    Google Scholar 

  • Sell J, Zimmermann T (1993) Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white fir. Holz Roh- Werkst 51:384

    Article  Google Scholar 

  • Singh AP, Daniel G (2001) The S2 Layer in the tracheid walls of Picea abies wood: inhomogeneity in lignin distribution and cell wall microstructure. Holzforschung 55:373–378

    Article  CAS  Google Scholar 

  • Singh AP, Daniel G, Nilsson T (2002) Ultrastructure of the S2 layer in relation to lignin distribution in Pinus radiata tracheid. J Wood Sci 48:95–98

    Article  CAS  Google Scholar 

  • Solala I, Antikainen T, Reza M et al (2013) Spruce fiber properties after high-temperature thermomechanical pulping (HT-TMP). Holzforschung 68:195–201

    Google Scholar 

  • Wardrop AB (1954) The fine structure of the conifer tracheid. Holzforschung 8(1):12–19

    Article  CAS  Google Scholar 

  • Wardrop AB (1957) The organization and properties of the outer layer of the secondary wall in conifer tracheids. Holzforschung 11:102–110

    Article  CAS  Google Scholar 

  • Wardrop AB (1964) The structure and formation of the cell wall in xylem. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, New York

    Google Scholar 

  • Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Multidisciplinary Institute of Digitalisation and Energy (MIDE, http://mide.aalto.fi). The authors thank Dr. Tuula Jyske (Finnish Forest Research Institute, Vantaa, Finland) for providing wood samples and Sakaguchi Daishi (Guest Researcher, Aalto University, Finland) for artistic work. This work made use of the Aalto University Nanomicroscopy Center (Aalto-NMC) premises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapani Vuorinen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reza, M., Ruokolainen, J. & Vuorinen, T. Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy. Planta 240, 565–573 (2014). https://doi.org/10.1007/s00425-014-2107-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2107-1

Keywords

Navigation