Skip to main content
Log in

Anti-microbial peptide (AMP): nucleotide variation, gene expression, and host resistance in the white pine blister rust (WPBR) pathosystem

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Pinus monticola antimicrobial peptide (PmAMP1) inhibits growth of Cronartium ribicola and other fungal pathogens. C. ribicola causes white pine blister rust and has resulted in a dramatic reduction of native white pines across North America. Quantitative disease resistance (QDR) is a highly desirable trait screened in breeding programs for durable resistance against C. ribicola. Along with phenotyping on a collection of germplasms, we analyzed PmAMP1 transcript and protein expression and re-sequenced the full-length gene including its promoter region. A mixed linear model was used to identify the association of single nucleotide polymorphisms (SNPs) with accumulated protein and stem QDR levels. Among 16 PmAMP1 SNPs identified in the present study, we found an association of protein levels with 6 SNPs (P < 0.05), including 2 in the 5′-untranslated region (UTR), 3 in the open reading frame (ORF) region with 2 nonsynonymous SNPs, and 1 SNP in the 3′-UTR. Another set of six SNPs was associated with stem QDR levels (P < 0.05), with one localized in the promoter region and the other five in the ORF region with four nonsynonymous changes, suggesting that multiple isoforms may have antifungal activity to differing degrees. Of three common PmAMP1 haplotypes, the trees with haplotype 2 showed high QDR levels with moderate protein abundance while those trees with haplotype 3 exhibited low QDR levels in the susceptible range and the lowest level of protein accumulation. Thus, an association of gene variations with protein abundance and resistance-related traits may facilitate elucidation of physiological contribution of PmAMP1 to host resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMP:

Anti-microbial peptide

ORF:

Open reading frame

PR:

Pathogenesis-related

QDR:

Quantitative disease resistance

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

SNP:

Single nucleotide polymorphism

UTR:

Untranslated region

WPBR:

White pine blister rust

References

  • Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907

    Article  PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Canales J, Avila C, Cánovas FM (2011) A maritime pine antimicrobial peptide involved in ammonium nutrition: pine AMP and ammonium nutrition. Plant Cell Environ 34:1443–1453

    Article  PubMed  CAS  Google Scholar 

  • Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity. Nat Genet 38:813–818

    Article  PubMed  CAS  Google Scholar 

  • Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117:203–219

    Article  PubMed  CAS  Google Scholar 

  • Ekramoddoullah AK, Liu J-J, Zamani A (2006) Cloning and characterization of a putative antifungal peptide gene (PmAMP1) in Pinus monticola. Phytopathology 96:164–170

    Article  PubMed  CAS  Google Scholar 

  • Elfstrand M, Fossdal CG, Swedjemark G, Clapham D, Olsson O, Sitbon F, Sharma P, Lonneborg A, von Arnold S (2001) Identification of candidate genes for use in molecular breeding—a case study with the Norway spruce defensin-like gene, Spi1. Silvae Genet 50:75–81

    Google Scholar 

  • Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227

    Article  PubMed  CAS  Google Scholar 

  • Fins L, Byler J, Ferguson D, Harvey A, Mahalovich MF, McDonald G, Miller D, Schwandt J, Zack A (2002) Return of the giants—restoring western white pine to the inland Northwest. J For 100:20–26

    Google Scholar 

  • Fritig B, Heitz T, Legrand M (1998) Antimicrobial proteins in induced plant defense. Curr Opin Immunol 10:16–22

    Article  PubMed  CAS  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G, Flis I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:D963–D968

    Article  PubMed  CAS  Google Scholar 

  • Herrmann D, Barre P, Santoni S, Julier B (2010) Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa. Theor Appl Genet 121:865–876

    Article  PubMed  CAS  Google Scholar 

  • Hua XJ, van de Cotte B, Van Montagu M, Verbruggen N (2001) The 5′-untranslated region of At-P5R gene is involved in both transcriptional and post-transcriptional regulation. Plant J 26:157–169

    Article  PubMed  CAS  Google Scholar 

  • Hughes TA (2006) Regulation of gene expression by alternative untranslated regions. Trends Genet 22:119–122

    Article  PubMed  CAS  Google Scholar 

  • Kanada S, Nakano N, Potaczek DP, Maeda K, Shimokawa N, Niwa Y, Fukai T, Sanak M, Szczeklik A, Yagita H, Okumura K, Ogawa H, Nishiyama C (2008) Two different transcription factors discriminate the -315C>T-polymorphism of the FcεRI α-chain gene: binding of Sp1 to -315C and of a high mobility group-related molecule to -315 T. J Immunol 180:8204–8210

    PubMed  CAS  Google Scholar 

  • King JN, David A, Noshad D, Smith J (2010) A review of genetic approaches to the management of blister rust in white pines. For Pathol 40:292–313

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kwan T, Benovoy D, Dias C, Gurd S, Provencher C, Beaulieu P, Hudson TJ, Sladek R, Majewski J (2008) Genome-wide analysis of transcript isoform variation in humans. Nat Genet 40:225–231

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. doi:10.1093/bioinformatics/btp187

    PubMed  Google Scholar 

  • Liu J-J, Ekramoddoullah AK (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AK (2011) Genomic organization, induced expression and promoter activity of a resistance gene analog (PmTNL1) in western white pine (Pinus monticola). Planta 233:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Hunt R, Ekramoddoullah AK (2004a) Recent insights into genetic resistance of western white pine to white pine blister rust. Recent Res Dev Biotech Bioeng 6:65–76

    CAS  Google Scholar 

  • Liu B, Zhang S, Zhu X, Yang Q, Wu S, Mei M, Mauleon R, Leach J, Mew T, Leung H (2004b) Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant Microbe Interact 17:1146–1152

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AK, Zamani A (2005) A class IV chitinase is up-regulated upon fungal infection and abiotic stresses and associated with slow-canker-growth resistance to Cronartium ribicola in western white pine (Pinus monticola, Dougl. Ex D. Don). Phytopathology 95:284–291

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AK, Hunt RS, Zamani A (2006) Identification and characterization of random amplified polymorphic DNA markers linked to a major gene (Cr2) for resistance to Cronartium ribicola in Pinus monticola. Phytopathology 96:395–399

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Sturrock R, Ekramoddoullah AK (2010a) The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Zamani A, Ekramoddoullah AK (2010b) Expression profiling of a complex thaumatin-like protein family in western white pine. Planta 231:637–651

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Sniezko RA, Ekramoddoullah AK (2011) Association of a novel Pinus monticola chitinase gene (PmCh4B) with quantitative resistance to Cronartium ribicola. Phytopathology 101:904–911

    Article  PubMed  CAS  Google Scholar 

  • Manners JM (2009) Primitive defence: the MiAMP1 antimicrobial peptide family. Plant Mol Biol Rep 27:237–242

    Article  CAS  Google Scholar 

  • Marcus JP, Goulter KC, Green JL, Harrison SJ, Manners JM (1997) Purification, characterisation and cDNA cloning of an antimicrobial peptide from Macadamia integrifolia. Eur J Biochem 244:743–749

    Article  PubMed  CAS  Google Scholar 

  • McManus AM, Nielsen KJ, Marcus JP, Harrison SJ, Green JL, Manners JM, Craik DJ (1999) MiAMP1, a novel protein from Macadamia integrifolia adopts a Greek key beta-barrel fold unique amongst plant antimicrobial proteins. J Mol Biol 293:629–638

    Article  PubMed  CAS  Google Scholar 

  • Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Padovan L, Scocchi M, Tossi A (2010) Structural aspects of plant antimicrobial peptides. Curr Protein Pept Sci 11:210–219

    Article  PubMed  CAS  Google Scholar 

  • Quesada T, Gopal V, Cumbie WP, Eckert AJ, Wegrzyn JL, Neale DB, Goldfarb B, Huber DA, Casella G, Davis JM (2010) Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics 186:677–686

    Article  PubMed  CAS  Google Scholar 

  • Richardson BA, Ekramoddoulah AK, Liu J–J, Kim M-S, Klopfenstein NB (2010) Current and future molecular approaches to investigate the white pine blister rust pathosystem. For Pathol 40:314–331

    Article  Google Scholar 

  • Schwandt JW, Lockman IB, Kliejunas JT, Muir JA (2010) Current health issues and management strategies for white pines in the western United States and Canada. For Pathol 40:226–250

    Article  Google Scholar 

  • Sniezko RA, Kegley AJ, Danchok R (2008) White pine blister rust resistance in North America, Asian and European species—results from artificial inoculation trials in Oregon. Ann For Res 51:53–66

    Google Scholar 

  • Sooriyaarachchi S, Jaber E, Covarrubias AS, Ubhayasekera W, Asiegbu FO, Mowbray SL (2011) Expression and β-glucan binding properties of Scots pine (Pinus sylvestris L.) antimicrobial protein (Sp-AMP). Plant Mol Biol 77:33–45

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Verma SS, Yajima WR, Rahman MH, Shah S, Liu J-J, Ekramoddoullah AKM, Kav NNV (2012) A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus). Plant Mol Biol 79:61–74

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland

    Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zamany A, Liu J-J, Ekramoddoullah AK, Sniezko R (2011) Antifungal activity of a Pinus monticola antimicrobial peptide 1 (PmAMP1) and its accumulation in western white pine infected with Cronartium ribicola. Can J Microbiol 57:667–679

    Article  PubMed  CAS  Google Scholar 

  • Zarei A, Körbes AP, Younessi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75:321–331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Canadian Forest Service (CFS) and the CFS-Genomics R&D Initiative Fund awarded to J.-J.L. We thank J. Hutchinson and L. Baerg at CFS for support on DNA sequencing; J. Hill and A. Kegley at Dorena Genetic Resource Center (DGRC) for support on tree resistance assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Jun Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2012_1747_MOESM1_ESM.pdf

Supplementary Fig. S1 Nucleotide sequence comparison of the PmAMP1 genomic sequences. Multiple sequence alignment analysis was performed using an on-line ClustalW2 program provided by the European Bioinformatics Institute (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Genomic DNA fragment was amplified using gene-specific primers from each of 150 individual trees for direct DNA sequencing. Amplified fragments showed only one unique sequence for each of 128 trees as an indicator of homozygous genotypes. Genomic DNA sequences derived from other 22 trees showed SNPs at multiple sites, suggesting a heterozygous genotype for the PmAMP1 locus in each of these trees (PDF 160 kb)

425_2012_1747_MOESM2_ESM.tif

Supplementary Fig. S2 Phylogenetic analysis of the PmAMP1 genomic sequences. Based on PmAMP1 nucleotide sequence alignment result as shown in Suppl. Fig. 1, a representative of phylogenetic trees was generated by MEGA 4.0 software using the neighbor-joining (NJ) method (TIFF 1,662 kb)

425_2012_1747_MOESM3_ESM.bmp

Supplementary Fig. S3 Linkage disequilibrium (LD) analysis of the PmAMP1 single nucleotide polymorphism (SNP) sites. Plot of intra-locus linkage disequilibrium between 16 polymorphic DNA variation sites in the PmAMP1 gene estimated using the TASSEL software package. Graphic r 2 is presented in the upper right and P-values are indicated in the lower left (BMP 1,040 kb)

425_2012_1747_MOESM4_ESM.ppt

Supplementary Fig. S4 The LD scatter-plots of squared correlation coefficient (r 2) as a function of DNA distance in base-pairs between informative polymorphic sites (f > 0.1 and P < 0.01) in the PmAMP1 gene (PPT 58 kb)

Supplementary material 5 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JJ., Zamany, A. & Sniezko, R.A. Anti-microbial peptide (AMP): nucleotide variation, gene expression, and host resistance in the white pine blister rust (WPBR) pathosystem. Planta 237, 43–54 (2013). https://doi.org/10.1007/s00425-012-1747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1747-2

Keywords

Navigation