Skip to main content
Log in

Ablation of smooth muscle caldesmon affects the relaxation kinetics of arterial muscle

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Smooth muscle caldesmon (h-CaD) is an actin- and myosin-binding protein that reversibly inhibits the actomyosin ATPase activity in vitro. To test the function of h-CaD in vivo, we eliminated its expression in mice. The h-CaD-null animals appeared normal and fertile, although the litter size was smaller. Tissues from the homozygotes lacked h-CaD and exhibited upregulation of the non-muscle isoform, l-CaD, in visceral, but not vascular tonic smooth muscles. While the Ca2+ sensitivity of force generation of h-CaD-deficient smooth muscle remained largely unchanged, the kinetic behavior during relaxation in arteries was different. Both intact and permeabilized arterial smooth muscle tissues from the knockout animals relaxed more slowly than those of the wild type. Since this difference occurred after myosin dephosphorylation was complete, the kinetic effect most likely resulted from slower detachment of unphosphorylated crossbridges. Detailed analyses revealed that the apparently slower relaxation of h-CaD-null smooth muscle was due to an increase in the amplitude of a slower component of the biphasic tension decay. While the identity of this slower process has not been unequivocally determined, we propose it reflects a thin filament state that elicits fewer re-attached crossbridges. Our finding that h-CaD modulates the rate of smooth muscle relaxation clearly supports a role in the control of vascular tone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adam LP, Haeberle JR, Hathaway DR (1989) Phosphorylation of caldesmon in arterial smooth muscle. J Biol Chem 264(13):7698–7703

    PubMed  CAS  Google Scholar 

  2. Aksoy MO, Murphy RA, Kamm KE (1982) Role of Ca2+ and myosin light chain phosphorylation in regulation of smooth muscle. Am J Physiol 242:C109–C116

    PubMed  CAS  Google Scholar 

  3. Albrecht K, Schneider A, Liebetrau C, Ruegg JC, Pfitzer G (1997) Exogenous caldesmon promotes relaxation of guinea-pig skinned taenia coli smooth muscles: inhibition of cooperative reattachment of latch bridges? Pflugers Arch 434(5):534–542

    Article  PubMed  CAS  Google Scholar 

  4. Babu GJ, Loukianov E, Loukianova T, Pyne GJ, Huke S, Osol G, Low RB, Paul RJ, Periasamy M (2001) Loss of SM-B myosin affects muscle shortening velocity and maximal force development. Nat Cell Biol 3(11):1025–1029

    Article  PubMed  CAS  Google Scholar 

  5. Babu GJ, Pyne GJ, Zhou Y, Okwuchukuasanya C, Brayden JE, Osol G, Paul RJ, Low RB, Periasamy M (2004) Isoform switching from SM-B to SM-A myosin results in decreased contractility and altered expression of thin-filament/regulatory proteins. Am J Physiol Cell Physiol 287(3):C723–C729

    Article  PubMed  CAS  Google Scholar 

  6. Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238(82):97–101

    PubMed  CAS  Google Scholar 

  7. Brenner B, Chalovich JM (1999) Kinetics of thin filament activation probed by fluorescence of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle: implications for regulation of muscle contraction. Biophys J 77(5):2692–2708

    Article  PubMed  CAS  Google Scholar 

  8. Bryan J, Imai M, Lee R, Moore P, Cook RG, Lin WG (1989) Cloning and expression of a smooth muscle caldesmon. J Biol Chem 264(23):13873–13879

    PubMed  CAS  Google Scholar 

  9. de Tombe PP, Belus A, Piroddi N, Scellini B, Walker JS, Martin AF, Tesi C, Poggesi C (2007) Myofilament calcium sensitivity does not affect cross-bridge activation-relaxation kinetics. Am J Physiol Regul Integr Comp Physiol 292(3):R1129–R1136

    Article  PubMed  Google Scholar 

  10. Dillon PF, Aksoy MO, Driska SP, Murphy RA (1981) Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211:495–497

    Article  PubMed  CAS  Google Scholar 

  11. Dingus J, Hwo S, Bryan J (1986) Identification by monoclonal antibodies and characterization of human platelet caldesmon. J Cell Biol 102(5):1748–1757

    Article  PubMed  CAS  Google Scholar 

  12. Earley JJ, Su X, Moreland RS (1998) Caldesmon inhibits active crossbridges in unstimulated vascular smooth muscle: an antisense oligodeoxynucleotide approach. Circ Res 83(6):661–667

    Article  PubMed  CAS  Google Scholar 

  13. Eddinger TJ, Schiebout JD, Swartz DR (2005) Smooth muscle adherens junctions associated proteins are stable at the cell periphery during relaxation and activation. Am J Physiol Cell Physiol 289(6):C1379–C1387

    Article  PubMed  CAS  Google Scholar 

  14. Foster DB, Huang R, Hatch V, Craig R, Graceffa P, Lehman W, Wang C-LA (2004) Modes of caldesmon binding to actin: sites of caldesmon contact and modulation of interactions by phosphorylation. J Biol Chem 279(51):53387–53394

    Article  PubMed  CAS  Google Scholar 

  15. Fuglsang A, Khromov A, Torok K, Somlyo AV, Somlyo AP (1993) Flash photolysis studies of relaxation and cross-bridge detachment: higher sensitivity of tonic than phasic smooth muscle to MgADP. J Muscle Res Cell Motil 14(6):666–677

    Article  PubMed  CAS  Google Scholar 

  16. Fujii T, Imai M, Rosenfeld GC, Bryan J (1987) Domain mapping of chicken gizzard caldesmon. J Biol Chem 262(6):2757–2763

    PubMed  CAS  Google Scholar 

  17. Galinska-Rakoczy A, Engel P, Xu C, Jung H, Craig R, Tobacman LS, Lehman W (2008) Structural basis for the regulation of muscle contraction by troponin and tropomyosin. J Mol Biol 379(5):929–935

    Article  PubMed  CAS  Google Scholar 

  18. Guo H, Wang C-LA (2005) Specific disruption of smooth muscle caldesmon expression in mice. Biochem Biophys Res Commun 330(4):1132–1137

    Article  PubMed  CAS  Google Scholar 

  19. Haeberle JR, Hathaway DR (1992) Correspondence. J Muscle Res Cell Motil 13:584–585

    Article  Google Scholar 

  20. Haeberle JR, Hathaway DR, Smith CL (1992) Caldesmon content of mammalian smooth muscles. J Muscle Res Cell Motil 13(1):81–89

    Article  PubMed  CAS  Google Scholar 

  21. Haeberle JR, Hathaway DR, Smith CL (1992) Caldesmon content of mammalian smooth muscles [see comments]. J Muscle Res Cell Motil 13(1):81–89

    Article  PubMed  CAS  Google Scholar 

  22. Hayashi K, Kanda K, Kimizuka F, Kato I, Sobue K (1989) Primary structure and functional expression of h-caldesmon complementary DNA. Biochem Biophys Res Commun 164(1):503–511

    Article  PubMed  CAS  Google Scholar 

  23. Hemric ME, Chalovich JM (1988) Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin. J Biol Chem 263(4):1878–1885

    PubMed  CAS  Google Scholar 

  24. Hemric ME, Chalovich JM (1990) Characterization of caldesmon binding to myosin. J Biol Chem 265(32):19672–19678

    PubMed  CAS  Google Scholar 

  25. Horiuchi KY, Miyata H, Chacko S (1986) Modulation of smooth muscle actomyosin ATPase by thin filament associated proteins. Biochem Biophys Res Commun 136(3):962–968

    Article  PubMed  CAS  Google Scholar 

  26. Huang R, Wang CL (2006) A caldesmon peptide activates smooth muscle via a mechanism similar to ERK-mediated phosphorylation. FEBS Lett 580(1):63–66

    Article  PubMed  CAS  Google Scholar 

  27. Humphrey MB, Herrera-Sosa H, Gonzalez G, Lee R, Bryan J (1992) Cloning of cDNAs encoding human caldesmons. Gene 112(2):197–204

    Article  PubMed  CAS  Google Scholar 

  28. Ikebe M, Reardon S (1988) Binding of caldesmon to smooth muscle myosin. J Biol Chem 263(7):3055–3058

    PubMed  CAS  Google Scholar 

  29. Katsuyama H, Wang C-LA, Morgan KG (1992) Regulation of vascular smooth muscle tone by caldesmon. J Biol Chem 267(21):14555–14558

    PubMed  CAS  Google Scholar 

  30. Khromov A, Somlyo AV, Trentham DR, Zimmermann B, Somlyo AP (1995) The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study. Biophys J 69(6):2611–2622

    Article  PubMed  CAS  Google Scholar 

  31. Kitazawa T, Eto M, Woodsome TP, Brautigan DL (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem 275(14):9897–9900

    Article  PubMed  CAS  Google Scholar 

  32. Kitazawa T, Gaylinn BD, Denney GH, Somlyo AP (1991) G-protein-mediated Ca2+−sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 266:1708–1715

    PubMed  CAS  Google Scholar 

  33. Kitazawa T, Kobayashi S, Horiuti K, Somlyo AV, Somlyo AP (1989) Receptor-coupled, permeabilized smooth muscle: role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem 264:5339–5342

    PubMed  CAS  Google Scholar 

  34. Kuhn H, Tewes A, Gagelmann M, Guth K, Arner A, Ruegg JC (1990) Temporal relationship between force, ATPase activity, and myosin phosphorylation during a contraction/relaxation cycle in a skinned smooth muscle. Pflugers Arch 416(5):512–518

    Article  PubMed  CAS  Google Scholar 

  35. Lee MR, Li L, Kitazawa T (1997) Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J Biol Chem 272(8):5063–5068

    Article  PubMed  CAS  Google Scholar 

  36. Lehman W, Denault D, Marston S (1992) Novel immunological technique. J Muscle Res Cell Motil 13(5):582–585

    Article  PubMed  CAS  Google Scholar 

  37. Lehman W, Denault D, Marston S (1993) The caldesmon content of vertebrate smooth muscle. Biochim Biophys Acta 1203(1):53–59

    Article  PubMed  CAS  Google Scholar 

  38. Lehman W, Galinska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388(4):673–681

    Article  PubMed  CAS  Google Scholar 

  39. Li Y, Zhuang S, Guo H, Mabuchi K, Lu RC, Wang C-LA (2000) The major myosin-binding site of caldesmon resides near its N-terminal extreme. J Biol Chem 275(15):10989–10994

    Article  PubMed  CAS  Google Scholar 

  40. Lubomirov LT, Reimann K, Metzler D, Hasse V, Stehle R, Ito M, Hartshorne DJ, Gagov H, Pfitzer G, Schubert R (2006) Urocortin-induced decrease in Ca2+ sensitivity of contraction in mouse tail arteries is attributable to cAMP-dependent dephosphorylation of MYPT1 and activation of myosin light chain phosphatase. Circ Res 98(9):1159–1167

    Article  PubMed  CAS  Google Scholar 

  41. Mabuchi K, Li Y, Carlos A, Wang CL, Graceffa P (2001) Caldesmon exhibits a clustered distribution along individual chicken gizzard native thin filaments. J Muscle Res Cell Motil 22(1):77–90

    Article  PubMed  CAS  Google Scholar 

  42. Mabuchi K, Li Y, Tao T, Wang C-LA (1996) Immunocytochemical localization of caldesmon and calponin in chicken gizzard smooth muscle. J Muscle Res Cell Motil 17(2):243–260

    Article  PubMed  CAS  Google Scholar 

  43. Mabuchi K, Wang C-LA (1991) Electron microscopic studies of chicken gizzard caldesmon and its complex with calmodulin. J Muscle Res Cell Motil 12(2):145–151

    Article  PubMed  CAS  Google Scholar 

  44. Makuch R, Walsh MP, Dabrowska R (1989) Location of the calmodulin- and actin-binding domains at the C-terminus of caldesmon. FEBS Lett 247(2):411–414

    Article  PubMed  CAS  Google Scholar 

  45. Malmqvist U, Arner A, Makuch R, Dabrowska R (1996) The effects of caldesmon extraction on mechanical properties of skinned smooth muscle fibre preparations. Pflugers Arch 432(2):241–247

    Article  PubMed  CAS  Google Scholar 

  46. Marston SB (1989) What is latch? New ideas about tonic contraction in smooth muscle. J Muscle Res Cell Motil 10(2):97–100

    Article  PubMed  CAS  Google Scholar 

  47. Marston SB, Huber PAJ (1996) Caldesmon. In: Bárány M (ed) Biochemistry of Smooth Muscle Contraction. Academic Press, Inc., San Diego, pp 77–90

    Chapter  Google Scholar 

  48. Masuo M, Reardon S, Ikebe M, Kitazawa T (1994) A novel mechanism for the Ca2+−sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase. J Gen Physiol 104(2):265–286

    Article  PubMed  CAS  Google Scholar 

  49. Matsumura F, Yamashiro S (1993) Caldesmon. Curr Opin Cell Biol 5(1):70–76

    Article  PubMed  CAS  Google Scholar 

  50. McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65(2):693–701

    Article  PubMed  CAS  Google Scholar 

  51. Ngai PK, Walsh MP (1987) The effects of phosphorylation of smooth-muscle caldesmon. Biochem J 244(2):417–425

    PubMed  CAS  Google Scholar 

  52. Nishiye E, Somlyo AV, Torok K, Somlyo AP (1993) The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J Physiol 460:247–271

    PubMed  CAS  Google Scholar 

  53. Owada MK, Hakura A, Iida K, Yahara I, Sobue K, Kakiuchi S (1984) Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells. Proc Natl Acad Sci U S A 81(10):3133–3137

    Article  PubMed  CAS  Google Scholar 

  54. Pfitzer G, Schroeter M, Hasse V, Ma J, Rosgen KH, Rosgen S, Smyth N (2005) Is myosin phosphorylation sufficient to regulate smooth muscle contraction? Adv Exp Med Biol 565:319–328; discussion 328, 405–315.

    Google Scholar 

  55. Rembold CM, Wardle RL, Wingard CJ, Batts TW, Etter EF, Murphy RA (2004) Cooperative attachment of cross bridges predicts regulation of smooth muscle force by myosin phosphorylation. Am J Physiol Cell Physiol 287(3):C594–C602

    Article  PubMed  CAS  Google Scholar 

  56. Riseman VM, Lynch WP, Nefsky B, Bretscher A (1989) The calmodulin and F-actin binding sites of smooth muscle caldesmon lie in the carboxyl-terminal domain whereas the molecular weight heterogeneity lies in the middle of the molecule. J Biol Chem 264(5):2869–2875

    PubMed  CAS  Google Scholar 

  57. Schroeter MM, Hasse V, Roesgen S, Roesgen K-H, Smyth NR, Diepold A, Chalovich JM, Pfitzer G (2005) Probing the myosin binding region of caldesmon in a knock-out mouse model. Biophys J 88:359a

    Google Scholar 

  58. Sen A, Chen YD, Yan B, Chalovich JM (2001) Caldesmon reduces the apparent rate of binding of myosin S1 to actin- tropomyosin. Biochemistry 40(19):5757–5764

    Article  PubMed  CAS  Google Scholar 

  59. Smith CW, Marston SB (1985) Disassembly and reconstitution of the Ca2+−sensitive thin filaments of vascular smooth muscle. FEBS Lett 184(1):115–119

    Article  PubMed  CAS  Google Scholar 

  60. Smolock EM, Trappanese DM, Chang S, Wang T, Titchenell P, Moreland RS (2009) siRNA-mediated knockdown of h-caldesmon in vascular smooth muscle. Am J Physiol Heart Circ Physiol 297(5):H1930–H1939

    Article  PubMed  CAS  Google Scholar 

  61. Sobieszek A, Bremel RD (1975) Preparation and properties of vertebrate smooth-muscle myofibrils and actomyosin. Eur J Biochem 55(1):49–60

    Article  PubMed  CAS  Google Scholar 

  62. Sobue K, Muramoto Y, Fujita M, Kakiuchi S (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci U S A 78(9):5652–5655

    Article  PubMed  CAS  Google Scholar 

  63. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372(6503):231–236

    Article  PubMed  CAS  Google Scholar 

  64. Stafford WF, Jancso A, Graceffa P (1990) Caldesmon from rabbit liver: molecular weight and length by analytical ultracentrifugation. Arch Biochem Biophys 281(1):66–69

    Article  PubMed  CAS  Google Scholar 

  65. Stehle R, Iorga B, Pfitzer G (2007) Calcium regulation of troponin and its role in the dynamics of contraction and relaxation. Am J Physiol Regul Integr Comp Physiol 292(3):R1125–R1128

    Article  PubMed  CAS  Google Scholar 

  66. Stehle R, Kruger M, Pfitzer G (2002) Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes. Biophys J 83(4):2152–2161

    Article  PubMed  CAS  Google Scholar 

  67. Stull JT, Gallagher PJ, Herring BP, Kamm KE (1991) Vascular smooth muscle contractile elements. Cellular regulation. Hypertension 17(6 Pt 1):723–732

    Article  PubMed  CAS  Google Scholar 

  68. Tansey MG, Hori M, Karaki H, Kamm KE, Stull JT (1990) Okadaic acid uncouples myosin light chain phosphorylation and tension in smooth muscle. FEBS Lett 270:219–221

    Article  PubMed  CAS  Google Scholar 

  69. Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266(1):8–14

    Article  PubMed  CAS  Google Scholar 

  70. Wang C-LA (2001) Caldesmon and smooth-muscle regulation. Cell Biochem Biophys 35(3):275–288

    Article  PubMed  CAS  Google Scholar 

  71. Wang Z, Jiang H, Yang ZQ, Chacko S (1997) Both N-terminal myosin-binding and C-terminal actin-binding sites on smooth muscle caldesmon are required for caldesmon-mediated inhibition of actin filament velocity. Proc Natl Acad Sci U S A 94(22):11899–11904

    Article  PubMed  CAS  Google Scholar 

  72. Wang CL, Wang LW, Xu SA, Lu RC, Saavedra-Alanis V, Bryan J (1991) Localization of the calmodulin- and the actin-binding sites of caldesmon. J Biol Chem 266(14):9166–9172

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NIH (P01-AM41637 and R01-HL92252). The authors wish to thank Dr. Hiroshi Mashimo for his assistance in the early phase of this project and Dr. Lynne Coluccio for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Lueh Albert Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Huang, R., Semba, S. et al. Ablation of smooth muscle caldesmon affects the relaxation kinetics of arterial muscle. Pflugers Arch - Eur J Physiol 465, 283–294 (2013). https://doi.org/10.1007/s00424-012-1178-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1178-8

Keywords

Navigation