Skip to main content
Log in

Mutation of single murine acetylcholine receptor subunits reveals differential contribution of P121 to acetylcholine binding and channel opening

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The nicotinic acetylcholine receptor (AChR) is a heteropentameric, ligand-gated ion channel at the neuromuscular junction, where it is responsible for signal transduction between the motorneuron and the muscle. Point mutations in the subunits of the receptor change the channel’s electrophysiological properties and underlie inherited forms of muscle weakness, the congenital myasthenic syndromes. One point mutation (P121L) has been identified in the ε-subunit of patients suffering from the fast-channel congenital myasthenic syndrome, which is evoked by reduced AChR openings. We introduced the P121L mutation into all murine AChR subunits and performed electrophysiological studies in Xenopus laevis oocytes. The P121L mutation in the ε-subunit of the adult mouse AChR affected ligand binding and channel gating in a manner similar to that described for human AChR. At equivalent positions in the α- and β-subunits, the mutation caused only minor electrophysiological changes. Mutation of the δ-subunit had similar, but less pronounced functional consequences compared to εP121L, reflecting the asymmetry of the acetylcholine binding sites and the dominant effect of the α-ε site on channel opening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–g
Fig. 2a–e
Fig. 3a–e
Fig. 4

Similar content being viewed by others

References

  1. Asher O, Lupu-Meiri M, Jensen BS, Paperna T, Oron Y, Fuchs S (1998) How does the mongoose cope with α-bungarotoxin? Analysis of the mongoose muscle AChR α-subunit. Ann NY Acad Sci 841:97–1002

    CAS  PubMed  Google Scholar 

  2. Barchan D, Kachalsky S, Neumann D, Vogel Z, Ovadia M, Kochva E, Fuchs S (1992) How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci USA 89:7717–7721

    CAS  PubMed  Google Scholar 

  3. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der OJ, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    CAS  PubMed  Google Scholar 

  4. Engel AG, Ohno K, Sine SM (1998) Congenital myasthenic syndromes: experiments of nature. J Physiol Paris 92:113–117

    CAS  PubMed  Google Scholar 

  5. Engel AG, Ohno K, Sine SM (2003) Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci 4:339–352

    CAS  PubMed  Google Scholar 

  6. Gensler S, Sander A, Korngreen A, Traina G, Giese G, Witzemann V (2001) Assembly and clustering of acetylcholine receptors containing GFP-tagged epsilon or gamma subunits: selective targeting to the neuromuscular junction in vivo. Eur J Biochem 268:2209–2217

    CAS  PubMed  Google Scholar 

  7. Gomez CM, Maselli RA, Groshong J, Zayas R, Wollmann RL, Cens T, Charnet P (2002) Active calcium accumulation underlies severe weakness in a panel of mice with slow-channel syndrome. J Neurosci 22:6447–6457

    CAS  PubMed  Google Scholar 

  8. Groebe DR, Dumm JM, Levitan ES, Abramson SN (1995) α-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors. Mol Pharmacol 48:105–111

    CAS  PubMed  Google Scholar 

  9. Hamill OP, Sakmann B (1981) Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature 294:462–464

    CAS  PubMed  Google Scholar 

  10. Harel M, Kasher R, Nicolas A, Guss JM, Balass M, Fridkin M, Smit AB, Brejc K, Sixma TK, Katchalski-Katzir E, Sussman JL, Fuchs S (2001) The binding site of acetylcholine receptor as visualized in the X-Ray structure of a complex between alpha-bungarotoxin and a mimotope peptide. Neuron 32:265–275

    CAS  PubMed  Google Scholar 

  11. Herlitze S, Villarroel A, Witzemann V, Koenen M, Sakmann B (1996) Structural determinants of channel conductance in fetal and adult rat muscle acetylcholine receptors. J Physiol (Lond) 492:775–787

    CAS  Google Scholar 

  12. Jacobsen R, Yoshikami D, Ellison M, Martinez J, Gray WR, Cartier GE, Shon KJ, Groebe DR, Abramson SN, Olivera BM, McIntosh JM (1997) Differential targeting of nicotinic acetylcholine receptors by novel αA-conotoxins. J Biol Chem 272:22531–22537

    CAS  PubMed  Google Scholar 

  13. le Novere N, Corringer PJ, Changeux JP (1999) Improved secondary structure predictions for a nicotinic receptor subunit: incorporation of solvent accessibility and experimental data into a two-dimensional representation. Biophys J 76:2329–2345

    PubMed  Google Scholar 

  14. McArdle JJ, Lentz TL, Witzemann V, Schwarz H, Weinstein SA, Schmidt JJ (1999) Waglerin-1 selectively blocks the epsilon form of the muscle nicotinic acetylcholine receptor. J Pharmacol Exp Ther 289:543–550

    CAS  PubMed  Google Scholar 

  15. Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411

    CAS  PubMed  Google Scholar 

  16. Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982) Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797

    CAS  PubMed  Google Scholar 

  17. Ohno K, Wang HL, Milone M, Bren N, Brengman JM, Nakano S, Quiram P, Pruitt JN, Sine SM, Engel AG (1996) Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor epsilon subunit. Neuron 17:157–170

    CAS  PubMed  Google Scholar 

  18. Osaka H, Malany S, Kanter JR, Sine SM, Taylor P (1999) Subunit interface selectivity of the α-neurotoxins for the nicotinic acetylcholine receptor. J Biol Chem 274:9581–9586

    CAS  PubMed  Google Scholar 

  19. Qin F, Auerbach A, Sachs F (1996) Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J 70:264–280

    CAS  PubMed  Google Scholar 

  20. Rabiner LRB, Juang H (1986) An introduction to hidden Markov models. IEEE ASSP 3:4–16

    Google Scholar 

  21. Sakmann B, Patlak J, Neher E (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286:71–73

    CAS  PubMed  Google Scholar 

  22. Sine SM (1993) Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proc Natl Acad Sci USA 90:9436–9440

    CAS  PubMed  Google Scholar 

  23. Sine SM, Wang HL, Bren N (2002) Lysine scanning mutagenesis delineates structural model of the nicotinic receptor ligand binding domain. J Biol Chem 277:29210–29223

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Witzemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, C., Korngreen, A. & Witzemann, V. Mutation of single murine acetylcholine receptor subunits reveals differential contribution of P121 to acetylcholine binding and channel opening. Pflugers Arch - Eur J Physiol 450, 178–184 (2005). https://doi.org/10.1007/s00424-005-1387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1387-5

Keywords

Navigation