Skip to main content
Log in

Application of inverse linear parametric models in the identification of rail track irregularities

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Requirements for current trains to be increasingly available have created the need to develop systems that can predict the quality of both trains and infrastructure components. The paper presents a new approach to the detection of rail truck irregularities, based on the measurements of bearing box acceleration during the operation of rail vehicles. The proposed procedure is based on an inverse problem solution, estimating track irregularities from measured acceleration of the applied model of vehicle dynamics. The simulation study of the proposed method, as well as its implementation, is presented. The method has been successfully applied for the identification of rail irregularities on a typical Polish railroad and vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIC:

Akaike’s information criterion

FPE:

Akaike’s final prediction error

LTI:

Linear and time-invariant model/system

ARX:

AutoRegressive with eXogeneous input

ARMAX:

AutoRegressive moving average with eXogeneous input

BJ:

Box-Jenkins

PEM:

Prediction error method

OE:

Output error

FRF:

Frequency response function

SISO:

Single-input single-output

i :

Discrete time

A, B, C, D, E, F:

Polynomials used for the representation of the transfer function

nA, nB, nC, nE, nF:

Order of polynomials used for the representation of the transfer function

z :

Operator of the Z transformation

e :

Disturbance variables in the model

u:

Input variables in the model

u 0 :

Inverse input

y:

Output variables in the model

G(z−1):

Transfer function

References

  1. Allena M.S., Vehiclene T.G.: Delayed, Multi-step inverse structural filter for robust force identification. Mech. Syst. Signal Process. 22(5), 1036–1054 (2008)

    Article  Google Scholar 

  2. Bałuch H.: Diagnostics of the Railways (in Polish). Wydawnictwo Komunikacji i Łączności, Warsaw, Poland (1978)

    Google Scholar 

  3. Bracciali A., Cascini G.: High-frequency mobile input reconstruction algorithm (HF-MIRA) applied to forces acting on a damped linear mechanical system. Mech. Syst. Signal Process. 21(2), 255–268 (1998)

    Article  Google Scholar 

  4. Chan T.H.T., Law S.S., Chan T.H.T., Zeng Q.H.: Moving force identification: a time domain method. J. Sound Vib. 201, 1–22 (1997)

    Article  Google Scholar 

  5. Chen, T.C., Lee, M.H.: Research on moving force estimation of the bridge structure using the adaptive input estimation method. J. Struct. Eng. (8) (2008)

  6. Elster C., Link A., Bruns T.: Analysis of dynamic measurements and determination of measurement uncertainty using a second-order model. Meas. Sci. Technol. 18, 3682–3697 (2007)

    Article  Google Scholar 

  7. Hollandsworth P.E., Busby H.R.: Impact force identification using the general inverse technique. Int. J. Impact Eng. 8, 315–322 (1989)

    Article  Google Scholar 

  8. Hundhausen, R.J., Adams, D.E., Derriso, M., Kukuchek, P., Alloway, R.: Transient loads identification for a standoff metallic thermal protection system panel. In: Proceedings of 23rd International, Modal Analysis Conference (IMAC XXIII). Orlando, Florida (2005)

  9. Iwnicki S.: Handbook of Railway Vehicle Dynamics. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  10. Kammer D.C.: Input force reconstruction using a time domain technique. ASME J. Vib. Acoust. 120(4), 868–874 (1998)

    Article  Google Scholar 

  11. Ljung L.: System Identification—Theory for the User. Prentice-Hall, Englewood Cliffs, NJ (2009)

    Google Scholar 

  12. M. Software. ADAMS Multibody Simulation Software. http://www.mscsoftware.com

  13. MATHWORKS Inc.: Matlab Signal Processing Toolbox Guide. The Mathowrks Inc., Natick, MA (2007)

    Google Scholar 

  14. MATHWORKS Inc.: Matlab System Identification Toolbox Guide. The Mathowrks Inc., Natick MA (2007)

    Google Scholar 

  15. Mendrok, K., Uhl, T.: Overview of modal model based damage detection methods. In: Proceedings of the 29th International Conference on Noise and Vibration Engineering (ISMA). Leuven, Belgium, pp. 561–576 (2004)

  16. Moscinski, J., Ogonowski, Z. (eds): Advanced Control with MATLAB & SIMULINK. Ellis Horwood Ltd, UK (1995)

    Google Scholar 

  17. PESA: http://www.pesa.pl

  18. Piazzi A., Visioli A.: Robust set-point constrained regulation via dynamic inversion. Int. J. Robust Nonlinear Control 11, 1–22 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raath A.D., Van Waveren C.C.: A time domain approach to load reconstruction for durability testing. Eng. Fail. Anal. 4(1), 113–119 (1998)

    Article  Google Scholar 

  20. Riftek: http://www.riftek.com

  21. Sang-Soo K., Choonsoo P., Young-Guk K., Chankyoung P.: Parameter characteristics of rail inspection measurement system of HSR-350x. J. Mech. Sci. Technol. 23, 1019–1022 (2009)

    Article  Google Scholar 

  22. Torfs, D., Swevers, J., De Schutter, J.: Quasi-perfect tracking control of non-minimal phase systems. In: Proceedings of the 30th Conference on Decision and Control Brighton, England, pp. 241–244 (1999)

  23. Uhl, T., Mendrok, K., Chudzikiewicz, A.: Rail track and rail vehicle intelligent monitoring system, structural health monitoring 2009: from system integration to autonomous systems. In: Proceedings of the 7th International Workshop on Structural Health Monitoring. Stanford, CA, September 9–11, 2009, vol. 1, pp. 617–624 (2009)

  24. Uhl T.: The inverse identification problem and its technical application. Arch. Appl. Mech. 77(5), 325–337 (2007)

    Article  MATH  Google Scholar 

  25. VI-grade GmbH, VI-Rail Plugin for MSC.ADAMS. http://www.vi-grade.com

  26. Weston, P.F., Ling, C.S., Goodman, C.J., Roberts, C., Li, P., Goodall, R.M.: Monitoring lateral track irregularity from in-service railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221, 89–100 (1/2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Czop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czop, P., Mendrok, K. & Uhl, T. Application of inverse linear parametric models in the identification of rail track irregularities. Arch Appl Mech 81, 1541–1554 (2011). https://doi.org/10.1007/s00419-010-0500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0500-1

Keywords

Navigation