Skip to main content

Advertisement

Log in

High trefoil factor 1 (TFF1) expression in human retinoblastoma cells correlates with low growth kinetics, increased cyclin-dependent kinase (CDK) inhibitor levels and a selective down-regulation of CDK6

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Trefoil factor family (TFFs) peptides facilitate epithelial restitution, but also effect cell proliferation and apoptosis of normal and various cancer cell lines. In a recent study by our group, TFF2 expression was demonstrated in the murine retina, where it exhibits pro-proliferative and pro-apoptotic effects. In the present study, we investigated the expression and function of TFF peptides in eight human retinoblastoma cell lines. TFF1 was the only TFF peptide expressed at detectable levels in immunoblots of retinoblastoma cells. TFF1 expression levels were highly variable in different retinoblastoma cell lines and negatively correlated with cell growth curves. Recombinant human TFF1 had a negative effect on cell viability and caused a reduction in cell proliferation. Retinoblastoma cell lines with high TFF1 expression levels exhibited a selective down-regulation of cyclin-dependent kinase (CDK) 6, whereas CDK4 and CDK2 seem to be unaffected by TFF1 expression. In immunocytochemical studies, we observed a nuclear co-localization of TFF1 and CDK2 in Cajal bodies (CBs). In high TFF1 expressing human retinoblastoma cell lines CBs were smaller and higher in number compared to retinoblastoma lines with low TFF1 expression, indicating differences in cell cycle status between the different retinoblastoma cell lines. Our data further support the notion for a potential tumor suppressor function of TFF1. The nuclear localization of TFF1 in CBs—considered to play a role in cell cycle progression, potentially acting as a platform for CDK-cyclin function—offers a new impetus in the ongoing search for potential TFF1 interacting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrade LEC, Chan EKL, Raska I, Peebles CL, Roos G, Tan EM (1991) Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80-coilin. J Exp Med 173:1407–1419

    Article  PubMed  CAS  Google Scholar 

  • Andrade LEC, Tan EM, Chan EKL (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci USA 90:1947–1951

    Article  PubMed  CAS  Google Scholar 

  • Arumugam T, Brandt W, Ramachandran V, Moore TT, Wang H, May FE, Westley BR, Hwang RF, Logsdon CD (2011) Trefoil factor 1 stimulates both pancreatic cancer and stellate cells and increases metastasis. Pancreas 40(6):815–822

    Article  PubMed  CAS  Google Scholar 

  • Baus-Loncar M, Giraud AS (2005) Multiple regulatory pathways for trefoil factor (TFF) genes. Cell Mol Life Sci 62:2921–2931

    Article  PubMed  CAS  Google Scholar 

  • Bonkhoff H, Stein U, Welter C, Remberger K (1994) Differential expression of the pS2 protein in the human prostate and prostate cancer. Human Pathol 26(8):824–828

    Article  Google Scholar 

  • Bossenmeyer-Pourié C, Kannan R, Ribieras S, Wendling C, Stoll I, Thim L, Tomasetto C, Rio MC (2002) The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. J Cell Biol 157(5):761–770

    Article  PubMed  Google Scholar 

  • Buache E, Etique N, Alpy F, Stoll I, Muckensturm M, Reina-San-Martin B, Chenard MP, Tomasetto C, Rio MC (2011) Deficiency in trefoil factor 1 (TFF1) increases tumorigenicity of human breast cancer cells and mammary tumor development in TFF1-knockout mice. Oncogene 30:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Chan EKL, Takano S, Andrade LEC, Hamel JC, Matera AG (1994) Structure, expression and chromosomal localization of human p80-coilin gene. Nuc Acids Res 22(21):4462–4469

    Article  CAS  Google Scholar 

  • Efstathiou JA, Noda M, Rowan A, Dixon C, Chinery R, Jawhari A, Hattori T, Wright NA, Bodmer WF, Pignatelli M (1998) Intestinal trefoil factor controls the expression of the adenomatous polyposis coli- catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc Natl Acad Sci USA 95:3122–3127

    Article  PubMed  CAS  Google Scholar 

  • Emami S, Rodrigues S, Rodrigues CM, Le Floch N, Rivat C, Sm Attoub, Bruyneel E, Gesprach C (2004) Trefoil factor family (TFF) peptides and cancer progression. Peptides 25:885–898

    Article  PubMed  CAS  Google Scholar 

  • Faith DA, Isaacs WB, Morgan JD, Fedor HL, Hicks JL, Mangold LA, Walsh PC, Partin AW, Platz EA, Luo J, de Marzo AM (2004) Trefoil factor 3 overexpression in prostatic carcinoma: prognostic importance using tissue microarrays. Prostate 61:215–227

    Article  PubMed  CAS  Google Scholar 

  • Gallie BL, Holmes W, Phillips RA (1982) Reproducible growth in tissue culture of retinoblastoma tumor specimens. Cancer Res 42:301–305

    PubMed  CAS  Google Scholar 

  • Ge Y, Zhang J, Cao J, Wu Q, Sun L, Guo L, Wang Z (2012) TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro. Bosn J Basic Med Sci 12(2):74–81

    PubMed  CAS  Google Scholar 

  • Griegel S, Hong C, Frötschl R, Hülser DF, Greger V, Horsthemke B, Rajewski MF (1990) Newly established human retinoblastoma cell lines exhibit an “immortalized” but not an invasive phenotype in vitro. Int J Cancer 46:125–132

    Article  PubMed  CAS  Google Scholar 

  • Haubold M, Weise A, Stephan H, Dünker N (2010) Bone morphogenic protein 4 (BMP4) signaling in retinoblastoma cells. Int J Biol Sci 6(7):700–715

    Article  PubMed  CAS  Google Scholar 

  • Hinz M, Schwegler H, Chwieralski CE, Laube G, Linke R, Pohle W, Hoffmann W (2004) Trefoil factor family (TFF) expression in the mouse brain and pituitary: changes in the developing cerebellum. Peptides 25:827–832

    Article  PubMed  CAS  Google Scholar 

  • Hirota M, Awatsuji H, Sugihara Y, Furukawa Y, Hayashi K (1995) Expression of pS2 gene in rat brain. Biochem Mol Biol Int 5:1079–1084

    Google Scholar 

  • Hirsch C, Campano LM, Wöhrle S, Hecht A (2007) Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures. Exp Cell Res 313(3):572–587

    Google Scholar 

  • Hoffmann W (2005) TFF (trefoil factor family) peptide-triggered signals promoting mucosal restitution. Cell Mol Life Sci 62:2932–2938

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann W (2009) Trefoil factor family (TFF) peptides and chemokine receptors: a promising relationship. J Med Chem 52:6505–6510

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann W, Jagla W (2002) Cell type specific expression of secretory TFF peptides: colocalization with mucins and synthesis in the brain. Int Rev Cytol 213:147–181

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann W, Jagla W, Wiede A (2001) Molecular medicine of TFF-peptides: from gut to brain. Histol Histopathol 16:319–334

    PubMed  CAS  Google Scholar 

  • Jakowlew SB, Breathnach R, Jeltsch JM, Masiakowski P, Chambon P (1984) Sequence of the pS2 mRNA induced by estrogen in the human breast cancer cell line MCF-7. Nuc Acids Res 12:2861–2878

    Article  CAS  Google Scholar 

  • Kinoshita K, Taupin DR, Itoh H, Podolsky DK (2000) Distinct pathways of cell migration and anti-apoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Mol Cell Biol 20:4680–4690

    Article  PubMed  CAS  Google Scholar 

  • Kjellev S (2009) The Trefoil factor family–small peptides with multiple functionalities. Cell Mol Life Sci 66:1350–1369

    Article  PubMed  CAS  Google Scholar 

  • Langer G, Jagla W, Behrens-Baumann W, Walter S, Hoffmann W (1999) Secretory peptides TFF1 and TFF3 synthesized in human conjunctival goblet cells. Inv Opthalmol Vis Sci 40:2220–2224

    CAS  Google Scholar 

  • Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, Wendling C, Tomasetto C, Chambon P, Rio MC (1996) Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 274:259–262

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Hebert MD, Ye Y, Templeton DJ, Kung HJ, Matera AG (2000) Cell cycle-dependent localization of the CDK2-cyclin E complex in Cajal (coiled) bodies. J Cell Sci 113:1543–1552

    PubMed  CAS  Google Scholar 

  • May FB, Westley BR (1997) Expression of human intestinal trefoil factor in malignant cells and its regulation by oestrogen in breast cancer cells. J Pathol 182:404–413

    Article  PubMed  CAS  Google Scholar 

  • McFall RC, Sery TW, Makadon M (1977) Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res 37:1003–1010

    PubMed  CAS  Google Scholar 

  • Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, Ozawa T, James CD, Waldman T (2010) Pharmacological inhibition of cyclin-dependent kinase 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res 70(8):3228–3238

    Article  PubMed  CAS  Google Scholar 

  • Nunez AM, Jakowlew S, Briand JP, Gaire M, Krust A, Rio MC, Chambon P (1997) Characterization of the estrogen-induced pS2 protein secreted by the human breast cancer cell line MCF-7. Endocrinology 121(5):1759–1765

    Article  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M (2002) cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochem Biophys Acta 1602:73–87

    PubMed  CAS  Google Scholar 

  • Otto WR, Patel K, McKinnell I, Evans MD, Le CY, Frith D, Hanrathan S, Blight K, Blin N, Kayademir T, Poulson R, Jeffery R, Hunt T, Wright NA, McGregor F, Oien KA (2006) Identification of blottin: a novel gastric trefoil factor family-2 binding protein. Proteomics 6:4235–4245

    Article  PubMed  CAS  Google Scholar 

  • Paulsen FP, Berry MS (2006) Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem 41:1–56

    Article  PubMed  CAS  Google Scholar 

  • Paulsen FP, Woon CW, Varoga D, Jansen A, Garreis F, Jäger K, Amm M, Podolsky DK, Steven P, Barker NP, Sel S (2008) Intestinal trefoil factor/TFF3 promotes re-epithelialization of corneal wounds. J Biol Chem 238:13418–13427

    Article  Google Scholar 

  • Paunel-Görgülü AN, Franke AG, Paulsen FP, Dünker N (2011) Trefoil factor family peptide 2 acts pro-proliferative and pro-apoptotic in the murine retina. Histochem Cell Biol 135:461–473

    Article  PubMed  Google Scholar 

  • Perry JK, Kannan N, Grandison PM, Mitchell MD, Lobie PE (2007) Are trefoil factors oncogenic? Trends Endocrinol Metabol 19(2):74–81

    Google Scholar 

  • Prest SJ, May FEB, Westley BR (2002) The estrogen-regulated protein, TFF1, stimulates migration of human breast cancer cells. FASEB J 16(6):592–594

    PubMed  CAS  Google Scholar 

  • Raska I, Andrade LEC, Ochs RL, Chan EKL, Chang CM, Roos G, Tan EM (1991) Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res 195:27–37

    Article  PubMed  CAS  Google Scholar 

  • Reid TW, Albert DM, Rabson AS, Russell P, Craft J, Chu EW, Tralka TS, Wilcox JL (1974) Characteristics of an established cell line of retinoblastoma. J Nat Cancer Inst 53(2):347–360

    PubMed  CAS  Google Scholar 

  • Rivadeneira DB, Mayhew CN, Thangavel C, Sotillo E, Reed CA, Grana X, Knudsen ES (2010) Proliferative suppression by CDK4/6 inhibition: complex function of the retinoblastoma pathway in liver tissue and hepatoma cells. Gastroenterology 138:1920–1930

    Article  PubMed  CAS  Google Scholar 

  • Rivat C, Rodriguez S, Bruyneel E, Pietu G, Robert A, Redeuilh G, Bracke M, Gespach C, Attoub S (2005) Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor3 (TFF3)—and vascular endothelial growth factor—mediated cellular invasion and tumor growth. Cancer Res 65:195–202

    PubMed  Google Scholar 

  • Rösler S, Haase T, Claassen H, Schulze U, Schicht M, Riemann D, Brandt J, Wohlrab D, Müller-Hilke B, Goldring MB, Sel S, Varoga D, Garreis F, Paulsen FP (2010) Trefoil factor 3 is induced during degenerative and inflammatory joint disease, activates MMPs and enhances apoptosis of articular cartilage chondrocytes. Arthritis Rheum 62(3):815–825

    Article  PubMed  Google Scholar 

  • Sarraf CE, Alison MR, Ansari TW, Wright NA (1995) Subcellular distribution of peptides associated with gastric mucosal healing and neoplasia. Microsc Res Technol 31(3):234–247

    Article  CAS  Google Scholar 

  • Siu LS, Romanska H, Abel PD, Baus-Loncar M, Kayademir T, Stamp GWH, Lalani EN (2004) TFF2 (trefoil family factor2) inhibits apoptosis in breast and colorectal cancer cell lines. Peptides 25:855–863

    Article  PubMed  CAS  Google Scholar 

  • Spruck C, Sun D, Fiegl H, Marth C, Mueller-Holzner E, Goebel G, Widschwendter M, Reed SI (2006) Detection of low molecular weight derivatives of cyclin E1 is a function of cyclin E1 protein levels in breast cancer. 66(14):7355-60

  • Steven P, Schäfer G, Nölle B, Hinz M, Hoffmann W, Paulsen F (2004) Distribution of TFF peptides in corneal disease and pterygium. Peptides 25:819–825

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582:1564–1568

    Article  PubMed  CAS  Google Scholar 

  • Tashiro E, Tsuchiya A, Imoto M (2007) Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci 98(5):629–635

    Article  PubMed  CAS  Google Scholar 

  • Taupin DR, Kinoshita K, Podolsky DK (2000) Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. PNAS 97(2):799–804

    Article  PubMed  CAS  Google Scholar 

  • Thim L (1989) A new family of growth factor-like peptides. ‘Trefoil’ disulphide loop structures as a common feature in breast cancer associated peptide (pS2), pancreatic spasmolytic peptide (PSP), and frog skin peptides (spasmolysins). FEBS Lett 250:85–90

    Article  PubMed  CAS  Google Scholar 

  • Thim L, Mortz E (2000) Isolation and characterization of putative trefoil peptide receptors. Regul Pept 90:61–68

    Article  PubMed  CAS  Google Scholar 

  • Uchino H, Kataoka H, Itoh H, Hamasuna R, Koono M (2000) Overexpression of intestinal trefoil factor in human colon carcinoma cells reduces cellular growth in vitro and in vivo. Gastroenterology 118(1):60–69

    Article  PubMed  CAS  Google Scholar 

  • Westley BR, Griffin SM, May FE (2005) Interaction between TFF1 a gastric tumor suppressor trefoil protein and TFIZ1 a brichos domain-containing protein with homology to SP-C. Biochemistry 44:7967–7975

    Article  PubMed  CAS  Google Scholar 

  • Wiedemeyer WR, Dunn IF, Quayle SN, Zhang J, Cheda MG, Dunn GP, Zhuang L, Rosenbluh J, Chen S, Xiao Y, Shapiro GI, Hahn WC, Chin L (2010) Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proc Natl Acad Sci USA 107(25):11501–11506

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank U. Gerster and U. Laub for excellent technical assistance, H. Stephan for generously providing the different retinoblastoma cell lines and E. Cario for providing human duodenum and stomach tissue samples. We also would like to thank A. Hecht for the pCS2+ expression vector and the HEK293 cells and D. Gioè and C. Philippeit for proofreading of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Dünker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weise, A., Dünker, N. High trefoil factor 1 (TFF1) expression in human retinoblastoma cells correlates with low growth kinetics, increased cyclin-dependent kinase (CDK) inhibitor levels and a selective down-regulation of CDK6. Histochem Cell Biol 139, 323–338 (2013). https://doi.org/10.1007/s00418-012-1028-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1028-y

Keywords

Navigation