Skip to main content

Advertisement

Log in

DNAse I pre-treatment markedly enhances detection of nuclear cyclin-dependent kinase inhibitor p57Kip2 and BrdU double immunostaining in embryonic rat brain

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

As a member of the CIP/KIP family of cyclin-dependent kinase inhibitors (CKIs), p57Kip2 binds tightly to G1 cyclin/cyclin-dependent kinase complexes to block cell cycle progression. CKIs play critical roles in regulating the transition from proliferation to differentiation in many tissues, including the nervous system. Conversely, CKI dys-regulation contributes to neoplasia and cancer progression. While the combined detection of CKI immunoreactivity and S phase entry using bromodeoxyuridine (BrdU) incorporation may be particularly informative, successful immunostaining may be limited due to “masked” antigen epitopes and acid-induced signal degradation. We now report an improved double immunofluorescent method for detecting p57Kip2 and BrdU in paraformaldehyde-fixed frozen sections of embryonic rat brain. We substituted deoxyribonuclease I (DNAse I) for HCl pre-treatment to expose antigenic sites in frozen sections, and employed a biotinylated tyramide-based system to enhance p57Kip2 visualization. We identified a time- and dose-dependent relationship between DNAse I treatment and double labeling of p57Kip2 and BrdU, increasing both the numbers and intensities of immunopositive nuclei. With excess DNAse I treatment, however, there was signal degradation for both BrdU and total DNA, as reflected by DAPI staining. The use of DNAse I pre-treatment significantly increases the reliability and sensitivity of immunodetection of CKI nuclear factors, and should be useful for both developmental neurobiology studies as well as cancer diagnostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhuiyan ZA, Yatsuki H, Sasaguri T, Joh K, Soejima H, Zhu X, Hatada I, Morisaki H, Morisaki T, Mukai T (1999) Functional analysis of the p57KIP2 gene mutation in Beckwith–Wiedemann syndrome. Hum Genet 104:205–210

    Article  PubMed  CAS  Google Scholar 

  • Carey RG, Li B, DiCicco-Bloom E (2002) Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. J Neurosci 22:1583–1591

    PubMed  CAS  Google Scholar 

  • Caspary T, Cleary MA, Perlman EJ, Zhang P, Elledge SJ, Tilghman SM (1999) Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Beckwith–Wiedemann syndrome. Genes Dev 13:3115–3124

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW (2000) Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3′-kinase/Akt signaling pathway. J Biol Chem 275:35942–35952

    Article  PubMed  CAS  Google Scholar 

  • Dyer MA, Cepko CL (2000) p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127:3593–3605

    PubMed  CAS  Google Scholar 

  • Dyer MA, Cepko CL (2001) p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J Neurosci 21:4259–4271

    PubMed  CAS  Google Scholar 

  • Erber WN, Willis JI, Hoffman GJ (1997) An enhanced immunocytochemical method for staining bone marrow trephine sections. J Clin Pathol 50:389–393

    Article  PubMed  CAS  Google Scholar 

  • van Gijssel HE, van Gijlswijk RP, de Haas RR, Stark C, Mulder GJ, Meerman JH (1998) Immunohistochemical visualization of wild-type p53 protein in paraffin-embedded rat liver using tyramide amplification: zonal hepatic distribution of p53 protein after N-hydroxy-2-acetylaminofluorene administration. Carcinogenesis 19:219–222

    Article  PubMed  Google Scholar 

  • Gonchoroff NJ, Katzmann JA, Currie RM, Evans EL, Houck DW, Kline BC, Greipp PR, Loken MR (1986) S-phase detection with an antibody to bromodeoxyuridine. Role of DNase pretreatment. J Immunol Methods 93:97–101

    Article  PubMed  CAS  Google Scholar 

  • de Haas RR, Verwoerd NP, van der Corput MP, van Gijlswijk RP, Siitari H, Tanke HJ (1996) The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. J Histochem Cytochem 44:1091–1099

    PubMed  Google Scholar 

  • Hatada I, Mukai T (1995) Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet 11:204–206

    Article  PubMed  CAS  Google Scholar 

  • Hatada I, Inazawa J, Abe T, Nakayama M, Kaneko Y, Jinno Y, Niikawa N, Ohashi H, Fukushima Y, Iida K, Yutani C, Takahashi S, Chiba Y, Ohishi S, Mukai T (1996a) Genomic imprinting of human p57KIP2 and its reduced expression in Wilms’ tumors. Hum Mol Genet 5:783–788

    Article  PubMed  CAS  Google Scholar 

  • Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, Okada A, Ohishi S, Nabetani A, Morisaki H, Nakayama M, Niikawa N, Mukai T (1996b) An imprinted gene p57KIP2 is mutated in Beckwith–Wiedemann syndrome. Nat Genet 14:171–173

    Article  PubMed  CAS  Google Scholar 

  • Hatada I, Nabetani A, Morisaki H, Xin Z, Ohishi S, Tonoki H, Niikawa N, Inoue M, Komoto Y, Okada A, Steichen E, Ohashi H, Fukushima Y, Nakayama M, Mukai T (1997) New p57KIP2 mutations in Beckwith–Wiedemann syndrome. Hum Genet 100:681–683

    Article  PubMed  CAS  Google Scholar 

  • Hiort O, Kwan PW, DeLellis RA (1988) Immunohistochemistry of estrogen receptor protein in paraffin sections. Effects of enzymatic pretreatment and cobalt chloride intensification. Am J Clin Pathol 90:559–563

    PubMed  CAS  Google Scholar 

  • Hiromura K, Haseley LA, Zhang P, Monkawa T, Durvasula R, Petermann AT, Alpers CE, Mundel P, Shankland SJ (2001) Podocyte expression of the CDK-inhibitor p57 during development and disease. Kidney Int 60:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Hume WJ, Keat S (1990) Immunohistological optimization of detection of bromodeoxyuridine-labeled cells in decalcified tissue. J Histochem Cytochem 38:509–513

    PubMed  CAS  Google Scholar 

  • Hunyady B, Krempels K, Harta G, Mezey E (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem 44:1353–1362

    PubMed  CAS  Google Scholar 

  • Jun SY, Ro JY, Kim KR (2003) p57kip2 is useful in the classification and differential diagnosis of complete and partial hydatidiform moles. Histopathology 43:17–25

    Article  PubMed  Google Scholar 

  • Korkolopoulou P, Christodoulou P, Konstantinidou AE, Thomas-Tsagli E, Kapralos P, Davaris P (2000) Cell cycle regulators in bladder cancer: a multivariate survival study with emphasis on p27Kip1. Hum Pathol 31:751–760

    Article  PubMed  CAS  Google Scholar 

  • Kressel M (1998) Tyramide amplification allows anterograde tracing by horseradish peroxidase-conjugated lectins in conjunction with simultaneous immunohistochemistry. J Histochem Cytochem 46:527–533

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lam WW, Hatada I, Ohishi S, Mukai T, Joyce JA, Cole TR, Donnai D, Reik W, Schofield PN, Maher ER (1999) Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith–Wiedemann syndrome (BWS) provides a novel genotype–phenotype correlation. J Med Genet 36:518–523

    PubMed  CAS  Google Scholar 

  • Lee MH, Reynisdottir I, Massague J (1995) Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9:639–649

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Nagai H, Ohno T, Yuge M, Hatano S, Ito E, Mori N, Saito H, Kinoshita T (2002) Aberrant DNA methylation of p57(KIP2) gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood 100:2572–2577

    Article  PubMed  CAS  Google Scholar 

  • Li JQ, Wu F, Usuki H, Kubo A, Masaki T, Fujita J, Bandoh S, Saoo K, Takeuchi H, Kuriyama S, Ishida T, Imaida K (2003) Loss of p57KIP2 is associated with colorectal carcinogenesis. Int J Oncol 23:1537–1543

    PubMed  CAS  Google Scholar 

  • Li G, Domenico J, Lucas JJ, Gelfand EW (2004) Identification of multiple cell cycle regulatory functions of p57Kip2 in human T lymphocytes. J Immunol 173:2383–2391

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Furihata M, Ohtsuki Y, Sasaguri S, Ogoshi S (2000) Immunohistochemical characterization of p57KIP2 expression in human esophageal squamous cell carcinoma. Anticancer Res 20:1947–1952

    PubMed  CAS  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ (1995) p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9:650–662

    Article  PubMed  CAS  Google Scholar 

  • Nagahama H, Hatakeyama S, Nakayama K, Nagata M, Tomita K (2001) Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat Embryol (Berl) 203:77–87

    Article  CAS  Google Scholar 

  • Nakai S, Masaki T, Shiratori Y, Ohgi T, Morishita A, Kurokohchi K, Watanabe S, Kuriyama S (2002) Expression of p57(KIP2) in hepatocellular carcinoma: relationship between tumor differentiation and patient survival. Int J Oncol 20:769–775

    PubMed  CAS  Google Scholar 

  • Plenat F, Picard E, Antunes L, Vignaud JM, Marie B, Chalabreysse P, Muhale F (1997) Amplification of immunologic reactions using catalytic deposition at the reaction sites of tyramine derivatives. A decisive gain in sensitivity in immunohistochemistry and in situ hybridization. Ann Pathol 17:17–23

    PubMed  CAS  Google Scholar 

  • Reynaud EG, Pelpel K, Guillier M, Leibovitch MP, Leibovitch SA (1999) p57(Kip2) stabilizes the MyoD protein by inhibiting cyclin E-Cdk2 kinase activity in growing myoblasts. Mol Cell Biol 19:7621–7629

    PubMed  CAS  Google Scholar 

  • Said JW, Shintaku IP, Pinkus GS (1988) Immunohistochemical staining for terminal deoxynucleotidyl transferase (TDT). An enhanced method in routinely processed formalin-fixed tissue sections. Am J Clin Pathol 89:649–652

    PubMed  CAS  Google Scholar 

  • Sasaki K, Adachi S, Yamamoto T, Murakami T, Tanaka K, Takahashi M (1988) Effects of denaturation with HCl on the immunological staining of bromodeoxyuridine incorporated into DNA. Cytometry 9:93–96

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Matsubayashi H, Abe T, Fukushima N, Goggins M (2005) Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clin Cancer Res 11:4681–4688

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Toyota M, Kondo Y, Obata T, Daniel S, Pierce S, Imai K, Kantarjian HM, Issa JP, Garcia-Manero G (2003) Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood 101:4131–4136

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    PubMed  CAS  Google Scholar 

  • Shintaku IP, Said JW (1987) Detection of estrogen receptors with monoclonal antibodies in routinely processed formalin-fixed paraffin sections of breast carcinoma. Use of DNase pretreatment to enhance sensitivity of the reaction. Am J Clin Pathol 87:161–167

    PubMed  CAS  Google Scholar 

  • Suh J, Carey R, DiCicco-Bloom E (2001) PACAP negatively regulates precursor proliferation through p57kip2 inhibition of cdk2 in developing cerebral cortex. Soc Neurosci 27:Abstract # 896.816

  • Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K, Tokuda M (2002) Expression of p57kip2 and its clinical relevance in epithelial ovarian tumors. Anticancer Res 22:3191–3196

    PubMed  CAS  Google Scholar 

  • Williamson K, Gilliland R, Weir H, Grimes J, Hamilton P, Anderson N, Crockard A, Rowlands B (1994) Hydrochloric acid denaturation of colorectal tumour tissue infiltrated with bromodeoxyuridine. Cytometry 15:162–168

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Frisen J, Lee MH, Massague J, Barbacid M (1997) Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 11:973–983

    Article  PubMed  CAS  Google Scholar 

  • Ye W, DiCicco-Bloom E (2005) Localization of cdk inhibitor p57kip2 between zones of proliferation and differentiation in the embryonic brain suggests roles in cell-cycle exit and differentiation. Program No. 598.16. 2005 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington (Online)

  • Yue H, Jiang HY (2005) Expression of cell cycle regulator p57kip2, cyclinE protein and proliferating cell nuclear antigen in human pancreatic cancer: an immunohistochemical study. World J Gastroenterol 11:5057–5060

    PubMed  CAS  Google Scholar 

  • Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 387:151–158

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ (1999) p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 13:213–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH: grant R01 NS32401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel DiCicco-Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, W., Mairet-Coello, G. & DiCicco-Bloom, E. DNAse I pre-treatment markedly enhances detection of nuclear cyclin-dependent kinase inhibitor p57Kip2 and BrdU double immunostaining in embryonic rat brain. Histochem Cell Biol 127, 195–203 (2007). https://doi.org/10.1007/s00418-006-0238-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0238-6

Keywords

Navigation