Skip to main content

Advertisement

Log in

Effects of dexamethasone on human trabecular meshwork cells in vitro

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To study the effects of dexamethasone sodium phosphate (Dex) on human trabecular meshwork (HTM) cells in vitro.

Methods

HTM cells were treated with Dex 2 mg/ml, 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.1 mg/ml, or 0.05 mg/ml for 24 h. Cell viability was measured by a trypan blue exclusion test. Caspase-3/7, -8, -9 and -12 activities were measured by fluorochrome assays as mean signal intensity (msi) to assess apoptosis. Mitochondrial dehydrogenase activity was determined by a WST assay to quantify mitochondrial damage.

Results

Mean cell viabilities of HTM cells exposed to Dex at the higher doses of 2 mg/ml, 1 mg/ml, and 0.5 mg/ml were reduced: 11.9 % ± 3.5 (P < 0.001), 31.2 % ± 3.2 (P < 0.001), and 76.6 % ± 4.4 (P < 0.01). At the lower doses of 0.25 mg/ml, 0.1 mg/ml or 0.05 mg/ml, no significant cell viability reductions were seen: 96.3 % ± 0.7 (P > 0.05), 95.3 % ± 2.5 (P > 0.05) and 93.8 % ± 2.3 (P > 0.05), respectively compared to untreated HTM cells (97.0 % ± 1.9). Caspase-3/7 activity (msi) of HTM cells exposed to Dex 2, 1 or 0.5 mg/ml was 21068 ± 2498 (P < 0.001), 26994 ± 3104 (P < 0.001) and 20416 ± 1150 (P < 0.001) compared to untreated HTM cells 1148 ± 803. Caspase-9 activity (msi) of HTM cells after exposure to Dex 2, 1 or 0.5 mg/ml was 14188 ± 1203 (P < 0.001), 13256 ± 1564 (P < 0.001) and 15041 ± 1584 (P < 0.001) compared to untreated HTM cells 1748 ± 524. The lower doses of Dex did not significantly increase caspase-3/7 or -9 activities. There were no increases for caspase-8 or -12 activities at any of the tested Dex doses. The WST assay showed mitochondrial dehydrogenase activities of 14.3 ± 0.7 (P < 0.001), 9.6 ± 0.3 (P < 0.001) and 56.0 ± 7.6 (P < 0.001) at 2 mg/ml, 1 mg/ml and 0.5 mg/ml Dex compared to untreated HTM cells (186.1 ± 15.0).

Conclusions

Dex at 0.25, 0.1 and 0.05 mg/ml clinical dose did not cause significant reduction in cell viability, increased apoptosis, or mitochondrial dysfunction of HTM cells in vitro. At high doses (2, 1 or 0.5 mg/ml) Dex caused apoptosis via mitochondrial pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kwak HW, D'Amico DJ (1992) Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol 110:259–266

    Article  PubMed  CAS  Google Scholar 

  2. Kuppermann BD, Blumenkranz MS, Haller JA, Williams GA, Weinberg DV, Chou C, Whitcup SM, Dexamethasone DDS Phase II Study Group (2007) Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol 125:309–317

    Article  PubMed  CAS  Google Scholar 

  3. Clark AF, Steely HT, Dickerson JE Jr, English-Wright S, Stropki K, McCartney MD, Jacobson N, Shepard AR, Clark JI, Matsushima H, Peskind ER, Leverenz JB, Wilkinson CW, Swiderski RE, Fingert JH, Sheffield VC, Stone EM (2001) Glucocorticoid induction of the glaucoma gene MYOC in human and monkey trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci 42:1769–1780

    PubMed  CAS  Google Scholar 

  4. Beer PM, Bakri SJ, Singh RJ, Liu W, Peters GB 3rd, Miller M (2003) Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection. Ophthalmology 110:681–686

    Article  PubMed  Google Scholar 

  5. Cheng L, Banker AS, Martin M, Kozak I, Freeman WR (2009) Triamcinolone acetonide concentration of aqueous humor after decanted 20-mg intravitreal injection. Ophthalmology 116:1356–1369

    Article  PubMed  Google Scholar 

  6. Jonas JB (2004) Intraocular availability of triamcinolone acetonide after intravitreal injection. Am J Ophthalmol 137:560–562

    Article  PubMed  CAS  Google Scholar 

  7. Sharma A, Pirouzmanesh A, Patil J, Estrago-Franco MF, Zacharias LC, Pirouzmanesh A, Andley UP, Kenney MC, Kuppermann BD (2011) Evaluation of the toxicity of triamcinolone acetonide and dexamethasone sodium phosphate on human lens epithelial cells (HLE B-3). J Ocul Pharmacol Ther 27:265–271

    Article  PubMed  CAS  Google Scholar 

  8. Narayanan R, Kenney MC, Kamjoo S, Trinh TH, Seigel GM, Resende GP, Kuppermann BD (2005) Trypan blue: effect on retinal pigment epithelial and neurosensory retinal cells. Invest Ophthalmol Vis Sci 46:304–309

    Article  PubMed  Google Scholar 

  9. Short C, Keates RH, Donovan EF, Wyman M, Murdick PW (1966) Ocular penetration of dexamethasone. Arch Ophthamol 75:689–692

    Article  CAS  Google Scholar 

  10. Krupin T, Waltman SR, Becker B (1974) Ocular penetration in rabbits of topicaly applied dexamethasone. Arch Ophthamol 92:312

    Article  CAS  Google Scholar 

  11. Kupferman A, Pratt MV, Suckewer K, Leibowitz HM (1974) Topically applied steroids in corneal disease. III. The role of drug derivative in stromal absorption of dexamethasone. Arch Ophthalmol 91:373–376

    Article  PubMed  CAS  Google Scholar 

  12. Jain MR, Srivastava S (1978) Ocular penetration of hydrocortisone and dexamethasone into the aqueous humour after subconjunctival injection. Trans Ophthalmol Soc UK 98:63–65

    PubMed  CAS  Google Scholar 

  13. Wordinger RJ, Clark AF (1999) Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma. Prog. Retin. Eye Res 18:629–667

    CAS  Google Scholar 

  14. Alvarado J, Murphy C, Juster R (1984) Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 91:564–579

    PubMed  CAS  Google Scholar 

  15. Agarwal R, Talati M, Lambert W (1999) Fas-activated apoptosis and apoptosis mediators in human trabecular meshwork cells. Exp Eye Res 68:583–590

    Article  PubMed  CAS  Google Scholar 

  16. Marchetti MC, Di Marco B, Cifone G, Migliorati G, Riccardi C (2003) Dexamethasone-induced 1. apoptosis of thymocytes: role of glucocorticoid receptor-associated Src kinase and caspase-8 activation. Blood 101:585–593

    Article  PubMed  CAS  Google Scholar 

  17. McConkey DJ, Aguilar-Santelises M, Hartzell P, Eriksson I, Mellstedt H, Orrenius S, Jondal M (1991) Induction of DNA fragmentation in chronic B-Lymphoctic leukemia cells. J Immunol 146:1072–1076

    PubMed  CAS  Google Scholar 

  18. Zhang JP, Wong CK, Lam CWK (2000) Role of caspases in dexamethasone-induced apoptosis and activation of c-jun NH terminal kinase and p38 mitogen-activated protein kinase in human eosinophils. Clin Exp Immunol 122:20–27

    Article  PubMed  CAS  Google Scholar 

  19. Hassan AHS, Von Rosenthal P, Patchev VK, Holsboer F, Lmeida OFX (1996) Exacerbation of apoptosis in the dentate gyrus of the aged rat by dexamethasone and the protective role of corticosterone. Exp Neurol 140:43–52

    Article  PubMed  CAS  Google Scholar 

  20. Zysk G, Bruck W, Gerber J, Bruck Y, Prange HW, Nau R (1996) Anti-inflammatory treatment influences neuronal apoptotic cell death in the dentate gyrus in experimental pneumococcal meninigitis. J Neuropathol Exp Neurol 55:722–728

    Article  PubMed  CAS  Google Scholar 

  21. Sibayan SA, Latina MA, Sherwood ME, Flotte TJ, White K (1998) Apoptosis and Morphological changes in Drug-treated trabecular meshwork cells in vitro. Exp Eye Res 66:521–529

    Article  PubMed  CAS  Google Scholar 

  22. Clark AF, Wilson K, McCartney MD, Miggans ST, Kunkle M, Howe W (1994) Glucocorticocoid-induced formation of crosslinked actin networks in cultured human trabecular meshwork cells. Invest Ophthamol Vis Sci 35:281–294

    CAS  Google Scholar 

  23. Moya-Ortega MD, Alves TF, Alvarez-Lorenzo C, Concheiro A, Stefánsson E, Thorsteinsdóttir M, Loftsson T (2012) Dexamethasone eye drops containing γ-cyclodextrin-based nanogels. Int J Pharm. doi:10.1016/j.ijpharm.2012.11.002

    Google Scholar 

  24. Chang-Lin JE, Attar M, Acheampong AA, Robinson MR, Whitcup SM, Kuppermann BD, Welty D (2011) Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci 52:80–86

    Article  PubMed  CAS  Google Scholar 

Download references

Financial disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Sharma.

Additional information

Ashish Sharma and Alammaprabhu Jayaprakash Patil contributed equally.

Supported by the Discovery Eye Foundation, Henry L. Guenther Foundation, The Iris and B. Gerald Cantor Foundation, The Skirball Molecular Ophthalmology Program, Poly and Michael Smith Foundation, Research to Prevent Blindness Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Patil, A.J., Mansoor, S. et al. Effects of dexamethasone on human trabecular meshwork cells in vitro. Graefes Arch Clin Exp Ophthalmol 251, 1741–1746 (2013). https://doi.org/10.1007/s00417-013-2343-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2343-2

Keywords

Navigation