Skip to main content

Advertisement

Log in

Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and its association with the level of glaucomatous damage

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To analyze neurovascular coupling in the retina of untreated primary open-angle glaucoma (POAG) and ocular hypertension (OHT) patients.

Patients and methods

Maximal vessel dilation in response to flicker light was analyzed with Retinal Vessel Analyzer (RVA) in temporal superior/inferior arterioles and veins in 51 POAG patients, 46 OHT and 59 control subjects. RVA parameters were compared between groups, between contralateral POAG eyes, and correlated to intraocular pressure, visual field mean defect and retinal nerve fiber layer thickness.

Results

POAG eyes demonstrated generally smaller response of all vessels to flicker light than the other two groups (ANOVA p = 0.026; mean arterial flicker response in percent of baseline, averaged superior and inferior was 3.48 ± 2.22 % for controls , 2.35 ± 2.06 % for POAG patients , and 2.97 ± 2.35 % for OHT patients; corresponding values for venules were 3.88 ± 1.98 %, 2.89 ± 1.72 %, 3.45 ± 2.77 %). There was no difference in flicker response between the eye with more and less advanced damage in each patient of the POAG group (ANOVA p = 0.79). Correlation of flicker response to intraocular pressure (IOP) was borderline at best, correlations to the level of glaucomatous damage were not significant. Correlation of flicker response of superior and inferior vessels of the same eye was significant for the arteries (Pearson r = 0.23, p = 0.004), as well as venules (r = 0.52, p < 0.001).

Conclusion

General vessel response to flicker light was decreased in POAG patients, compared to normal controls and OHT patients. In contrast to significant correlation between the two contralateral eyes of the flicker response itself, only its borderline correlation to IOP was seen. There was no correlation to the level of damage, altogether indicating a systemic dysregulation phenomenon.

Grants

Swiss National Foundation Grant 3200B0-113685, Velux Stiftung Grant, Freie Akademische Gesellschaft (FAG) Grant, Pfizer Inc. Grant

Clinical trial registration reference number

ClinicalTrials.gov NCT00430209

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonvento G, Sibson N, Pellerin L (2002) Does glutamate image your thoughts? Trends Neurosci 25:359–364

    Article  PubMed  CAS  Google Scholar 

  2. Attwell D, Buchan A, Charpak S, Ritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain. Nature 468:232–243

    Article  PubMed  CAS  Google Scholar 

  3. Gugleta K, Fuchsjager-Mayrl G, Orgul S (2007) Is neurovascular coupling of relevance in glaucoma? Surv Ophthalmol 52(Suppl 2):S139–S143

    Article  PubMed  Google Scholar 

  4. Garhofer G, Zawinka C, Resch H, Huemer KH, Schmetterer L, Dorner GT (2004) Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma. J Glaucoma 13:340–344

    Article  PubMed  CAS  Google Scholar 

  5. Riva CE, Salgarello T, Logean E, Colotto A, Galan EM, Falsini B (2004) Flicker-evoked response measured at the optic disc rim is reduced in ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 45:3662–3668

    Article  PubMed  Google Scholar 

  6. Zeitz O, Mayer J, Hufnagel D, Praga R, Wagenfeld L, Galambos P, Wiermann A, Rebel C, Richard G, Klemm M (2009) Neuronal activity influences hemodynamics in the paraoptic short posterior ciliary arteries: a comparison between healthy and glaucomatous subjects. Invest Ophthalmol Vis Sci 50:5846–5850

    Article  PubMed  Google Scholar 

  7. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefánsson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393

    Article  PubMed  Google Scholar 

  8. Flammer J (2001) Glaucomatous optic neuropathy: a reperfusion injury. Klin Monatsbl Augenheilkd 218:290–291

    Article  PubMed  CAS  Google Scholar 

  9. Seifertl BU, Vilser W (2002) Retinal Vessel Analyzer (RVA)—design and function. Biomed Tech (Berl) 47(Suppl 1 Pt 2):678–681

    Article  Google Scholar 

  10. Vilser W, Nagel E, Lanzl I (2002) Retinal Vessel Analysis—new possibilities. Biomed Tech (Berl) 47(Suppl 1 Pt 2):682–685

    Article  Google Scholar 

  11. Pache M, Nagel E, Flammer J (2002) Reproducibility of measurements with the retinal vessel analyzer under optimal conditions. Klin Monatsbl Augenheilkd 219:523–527

    Article  PubMed  Google Scholar 

  12. Nagel E, Vilser W, Fink A, Riemer T (2006) Variance of retinal vessel diameter response to flicker light a methodical clinical study. Ophthalmologe 103:114–119

    Article  PubMed  CAS  Google Scholar 

  13. Garhofer G, Bek T, Boehm AG, Gherghel D, Grunwald J, Jeppesen P, Kergoat H, Kotliar K, Lanzl I, Lovasik JV, Nagel E, Vilser W, Orgul S, Schmetterer L, Ocular Blood Flow Research Association (2010) Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmologica 88:717–722

    Article  PubMed  Google Scholar 

  14. Gugleta K, Kochkorov A, Waldmann N, Polunina A, Katamay R, Flammer J, Orgul S (2012) Dynamics of retinal vessel response to flicker light in glaucoma patients and ocular hypertensives. Graefe's Arch Clin Exp Ophthalmol 250:589–594

    Article  CAS  Google Scholar 

  15. Gugleta K, Zawinka C, Rickenbacher I, Kochkorov A, Katamay R, Flammer J, Orgul S (2006) Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci 47:4034–4041

    Article  PubMed  Google Scholar 

  16. European Glaucoma Society EGS (2008) Perimetry. In: EGS, Terminology and guidlines for glaucoma. Dogma, Savona pp 82–87

  17. Wimpissinger B, Resch H, Berisha F, Weigert G, Schmetterer L, Polak K (2005) Response of retinal blood flow to systemic hyperoxia in smokers and nonsmokers. Graefes Arch Clin Exp Ophthalmol 243:646–652

    Article  PubMed  Google Scholar 

  18. Gugleta K, Polunina A, Kochkorov A, Waldmann N, Portmann N, Katamay R, Flammer J, Orgul S (2012) Association Between Risk Factors and Glaucomatous Damage in Untreated Primary Open-angle Glaucoma. J Glaucoma [Epub ahead of print]

  19. Flammer J (1986) The concept of visual field indices. Graefes Arch Clin Exp Ophthalmol 224:389–392

    Article  PubMed  CAS  Google Scholar 

  20. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN (2004) Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 122:827–837

    Article  PubMed  Google Scholar 

  21. Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS (2005) Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol 139:39–43

    Article  PubMed  Google Scholar 

  22. Resch H, Schmidl D, Hommer A, Rensch F, Jonas JB, Fuchsjäger-Mayrl G, Garhöfer G, Vass C, Schmetterer L (2011) Correlation of optic disc morphology and ocular perfusion parameters in patients with primary open angle glaucoma. Acta Ophthalmologica 89(7):e544–e549

    Article  PubMed  Google Scholar 

  23. Garhofer G, Resch H, Weigert G, Lung S, Simader C, Schmetterer L (2005) Short-term increase of intraocular pressure does not alter the response of retinal and optic nerve head blood flow to flicker stimulation. Invest Ophthalmol Vis Sci 46:1721–1725

    Article  PubMed  Google Scholar 

  24. Nagel E, Vilser W, Lanzl I (2001) Retinal vessel reaction to short-term IOP elevation in ocular hypertensive and glaucoma patients. Eur J Ophthalmol 11:338–344

    PubMed  CAS  Google Scholar 

  25. Nagel E, Vilser W, Lanzl I (2002) Functional analysis of retinal vessel diameter reaction to artificially raised intraocular pressure in glaucoma patients with and without dorzolamide therapy. Vasa 31:230–234

    Article  PubMed  CAS  Google Scholar 

  26. Buerk DG, Riva CE, Cranstoun SD (1996) Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli. Microvasc Res 52:13–26

    Article  PubMed  CAS  Google Scholar 

  27. Dorner GT, Garhofer G, Kiss B, Polska E, Polak K, Riva CE, Schmetterer L (2003) Nitric oxide regulates retinal vascular tone in humans. Am J Physiol Heart Circ Physiol 285:H631–H636

    PubMed  CAS  Google Scholar 

  28. Cohen Z, Bouchelet I, Olivier A, Villemure JG, Ball R, Stanimirovic DB, Hamel E (1999) Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization. J Cereb Blood Flow Metab 19:908–917

    Article  PubMed  CAS  Google Scholar 

  29. Climent B, Zsiros E, Stankevicius E, de la Villa P, Panyi G, Simonsen U, García-Sacristán A, Rivera L (2011) Intact rat superior mesenteric artery endothelium is an electrical syncytium and expresses strong inward rectifier K + conductance. Biochem Biophys Res Commun 410:501–507

    Article  PubMed  CAS  Google Scholar 

  30. Kuo L, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 259:H1063–H1070

    PubMed  CAS  Google Scholar 

  31. Kuo L, Arko F, Chilian WM, Davis MJ (1993) Coronary venular responses to flow and pressure. Circ Res 72:607–615

    Article  PubMed  CAS  Google Scholar 

  32. Fadini GP, Pagano C, Baesso I, Kotsafti O, Doro D, de Kreutzenberg SV, Avogaro A, Agostini C, Dorigo MT (2010) Reduced endothelial progenitor cells and brachial artery flow-mediated dilation as evidence of endothelial dysfunction in ocular hypertension and primary open-angle glaucoma. Acta Ophthalmol 88:135–141

    Article  PubMed  Google Scholar 

  33. Kuo L, Chilian WM, Davis MJ (1991) Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am J Physiol 261:H1706–H1715

    PubMed  CAS  Google Scholar 

  34. Flammer J, Haefliger IO, Orgul S, Resink T (1999) Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma 8:212–219

    Article  PubMed  CAS  Google Scholar 

  35. Polak K, Luksch A, Berisha F, Fuchsjaeger-Mayrl G, Dallinger S, Schmetterer L (2007) Altered nitric oxide system in patients with open-angle glaucoma. Arch Ohthalmol 125:494–498

    Article  CAS  Google Scholar 

  36. Harizman N, Oliveira C, Chiang A, Tello C, Marmor M, Ritch R, Liebmann JM (2006) The ISNT rule and differentiation of normal from glaucomatous eyes. Arch Ophthalmol 124:1579–1583

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gugleta.

Additional information

Authors have full control of all primary data and agree to allow Graefes Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gugleta, K., Waldmann, N., Polunina, A. et al. Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and its association with the level of glaucomatous damage. Graefes Arch Clin Exp Ophthalmol 251, 1577–1585 (2013). https://doi.org/10.1007/s00417-013-2276-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2276-9

Keywords

Navigation