Skip to main content

Advertisement

Log in

Adaptive metabolic changes in CADASIL white matter

Journal of Neurology Aims and scope Submit manuscript

Abstract

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an important genetic cause of stroke, but pathogenic mechanisms and functional alterations remain poorly characterized. The purpose of this study was to investigate adaptive metabolic and functional changes in white matter hyperintensities and normal-appearing white matter in CADASIL patients using 1H-magnetic resonance spectroscopic imaging (MRSI). Eight CADASIL patients and eight matched healthy controls were studied. 1H-MRSI data were acquired on a 3T scanner using high-resolution multi-spin echo spectroscopic imaging (T E = 288 ms) and non-accelerated medium-resolution MRSI (T E = 35 ms). MRI of all CADASIL patients demonstrated characteristic white matter hyper-intensities (WMH) in the subcortical periventricular white matter. Cre/Cho, Glx/Cho and Glx/Cre ratios were significantly decreased in WMH compared to normal-appearing white matter (NAWM) in patients, while Glx/Cre and mI/Cho ratios in NAWM showed a significant increase compared to healthy controls. In severely affected patients derived spectra reflected a decrease of NAA concentrations inside WMH when compared to healthy white matter. Metabolic abnormalities in WMH of CADASIL patients are compatible with axonal loss due to chronic micro-infarctions. Increased Glx/Cre and mI/Cho ratios in NAWM indicate an augmented glial cell density and decreased neuronal cell density. This altered tissue composition might be interpreted as adaptation to hypoperfusion and impaired vasoreactivity in NAWM of CADASIL patients. Our data might contribute to the general understanding of adaptive processes induced by hypoperfusion and chronic ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Angelie E, Bonmartin A, Boudraa A, Gonnaud PM, Mallet JJ, Sappey-Marinier D (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. Am J Neuroradiol 22:119–127

    CAS  PubMed  Google Scholar 

  2. Auer DP, Schirmer T, Heidenreich JO, Herzog J, Puetz B, Dichgans M (2001) Altered white, grey matter metabolism in CADASIL: a proton MR spectroscopy and 1H-MRSI study. Neurology 56:635–642

    CAS  PubMed  Google Scholar 

  3. Barkhof F, van Walderveen M (1999) Characterization of tissue damage in multiple sclerosis by nuclear magnetic resonance. Philos Trans R Soc Lond B Biol Sci 354:1675–1686

    Article  CAS  PubMed  Google Scholar 

  4. Brooks WM, Wesley MH, Kodituwakku PW, Garry PJ, Rosenberg GA (1997) 1H-MRS differentiates white matter hyperintensities in subcortical arteriosclerotic encephalopathy from those in normal elderly. Stroke 28:1940–1943

    CAS  PubMed  Google Scholar 

  5. Chabriat H, Bousser MG, Pappata S (1995) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a positron emission tomography study in two affected family members. Stroke 26:1729–1730

    CAS  PubMed  Google Scholar 

  6. Chabriat H, Pappata S, Poupon C, Clark CA, Vahedi K, Poupon F, Mangin JF, Pachot-Clouard M, Jobert A, Le Bihan D, Bousser MG (1999) Clinical severity in CADASIL related to ultrastructural damage in white matter: in vivo study with diffusion tensor MRI. Stroke 30:2637–2643

    CAS  PubMed  Google Scholar 

  7. De Graaf RG (2007) In vivo NMR spectroscopy—principles and techniques, 2nd edn. Wiley, West Sussex

    Google Scholar 

  8. Dichgans M (2002) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: phenotypic and mutational spectrum. J Neurological Sci 203–204:77–80

    Article  Google Scholar 

  9. Dichgans M (2007) Genetics of ischemic stroke. Lancet Neurol 6:149–161

    Article  CAS  PubMed  Google Scholar 

  10. Dichgans M, Mayer M, Uttner I, Bruening R, Mueller-Hoecker J, Rungger G, Ebke M, Klockgether T, Gasser T (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44:731–739

    Article  CAS  PubMed  Google Scholar 

  11. Gray F, Polivka M, Viswanathan A, Baudrimont M, Bousser MG, Chabriat H (2007) Apoptosis in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neuropathol Exp Neurol 66:597–607

    Article  PubMed  Google Scholar 

  12. Haase A, Frahm J, Hanicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30(4):341–344

    Article  CAS  PubMed  Google Scholar 

  13. Henning A, Schär M, Schulte RF, Wilm B, Pruessmann KP, Boesiger P (2008) SELOVS: brain MRSI localization based on highly selective T1- and B1-insensitive outer-volume suppression at 3T. Magn Reson Med 59:40–51

    Article  CAS  PubMed  Google Scholar 

  14. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cécillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 24:707–710

    Article  Google Scholar 

  15. Jouvent E, Viswanathan A, Mangin JF, O’Sullivan M, Guichard JP, Gschwendtner A, Cumurciuc R, Buffon F, Peters N, Pachaï C, Bousser MG, Dichgans M, Chabriat H (2007) Brain atrophy is related to lacunar lesions and tissue microstructural changes in CADASIL. Stroke 38:1786–1790

    Article  PubMed  Google Scholar 

  16. Jung HH, Bassetti C, Tournier-Lasserve E, Vahedi K, Arnaboldi M, Arifi VB, Burgunder JM (1995) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a clinicopathological and genetic study of a Swiss family. J Neurol Neurosurg Psychiatry 59:138–143

    Article  CAS  PubMed  Google Scholar 

  17. Kemp GJ (2000) Non-invasive methods for studying brain energy metabolism: what they show and what it means. Dev Neurosci 22:418–428

    Article  CAS  PubMed  Google Scholar 

  18. Lacombe P, Oligo C, Domenga V, Tournier-Lasserve E, Joutel A (2005) Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 36:1053–1058

    Article  PubMed  Google Scholar 

  19. Macri MA, Colonnese C, Garreffa G, Fattapposta F, Restuccia R, Bianco F, Labruna L, Maraviglia B (2006) A chemical shift imaging study on regional metabolite distribution in a CADASIL family. Magn Reson Imaging 24:443–447

    Article  CAS  PubMed  Google Scholar 

  20. Markus HS, Martin RJ, Simpson MA, Dong YB, Ali N, Crosby AH, Powell JF (2002) Diagnostic strategies in CADASIL. Neurology 59:1134–1138

    CAS  PubMed  Google Scholar 

  21. Mellies JK, Bäumer T, Müller JA, Tournier-Lasserve E, Chabriat H, Knobloch O, Hackelöer HJ, Goebel HH, Wetzig L, Haller P (1998) SPECT study of a German CADASIL family: a phenotype with migraine and progressive dementia only. Neurology 50:1715–1721

    CAS  PubMed  Google Scholar 

  22. Oliveri RL, Mazzei R, Gabriele AL, Gambardella A (2001) A novel mutation in the Notch3 gene in an Italian family with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy—genetic and magnetic resonance spectroscopic findings. Arch Neurol 58:1418–1422

    Article  CAS  PubMed  Google Scholar 

  23. Pfefferkorn T, von Stuckrad-Barre S, Herzog J, Gasser T, Hamann GF, Dichgans M (2001) Reduced cerebrovascular CO(2) reactivity in CADASIL: a transcranial Doppler sonography study. Stroke 32:17–21

    CAS  PubMed  Google Scholar 

  24. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  25. Reddy H, De Stefano N, Mortilla M, Federico A, Matthews PM (2002) Functional reorganization of motor cortex increases with greater axonal injury from CADASIL. Stroke 33:502–508

    Article  CAS  PubMed  Google Scholar 

  26. Rubio A, Rifkin D, Powers JM, Patel U, Stewart J, Faust P, Goldman JE, Mohr JP, Numaguchi Y, Jensen K (1997) Phenotypic variability of CADASIL and novel morphologic findings. Acta Neuropathol 94:247–254

    Article  CAS  PubMed  Google Scholar 

  27. Ruchoux MM, Chabriat H, Bousser MG, Baudrimont M, Tournier-Lasserve E (1994) Presence of ultrastructural arterial lesions in muscle and skin vessels of patients with CADASIL. Stroke 25:2291–2292

    CAS  PubMed  Google Scholar 

  28. Ruchoux MM, Guerouaou D, Vandenhaute B, Pruvo JP, Vermersch P, Leys D (1995) Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol 89:500–512

    Article  CAS  PubMed  Google Scholar 

  29. Tournier-Lasserve E, Joutel A, Melki J, Weissenbach J, Lathrop GM, Chabriat H, Mas JL, Cabanis EA, Baudrimont M, Maciazek J, Bach MA, Bousser MG (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3:256–259

    Article  CAS  PubMed  Google Scholar 

  30. Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, Schnepf B, Boeker H, Boesiger P, Northoff G (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 66(5):478–486

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T.A. received a fellowship of the European Neurological Society (ENS). The study was supported by the CADASIL Foundation of America. We thank Thomas Lange and Ulrike Dydak for providing SIview and their advice on the protocol optimization for the lactate detection and the Department of Statistics, Faculty of Medicine, University of Zurich, for statistical support.

Conflicts of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Jung.

Additional information

T. Akhvlediani and A. Henning contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhvlediani, T., Henning, A., Sándor, P.S. et al. Adaptive metabolic changes in CADASIL white matter. J Neurol 257, 171–177 (2010). https://doi.org/10.1007/s00415-009-5281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5281-5

Keywords

Navigation