Skip to main content
Log in

Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Fluorescence in situ hybridization (FISH) is a useful tool for physical mapping of chromosomes and studying evolutionary chromosome rearrangements. Here we report a robust method for single-copy gene FISH for wheat. FISH probes were developed from cDNA of cytosolic acetyl-CoA carboxylase (ACCase) gene (Acc-2) and mapped on chromosomes of bread wheat, Triticum aestivum L. (2n = 6x = 42, AABBDD), and related diploid and tetraploid species. Another nine full-length (FL) cDNA FISH probes were mapped and used to identify chromosomes of wheat species. The Acc-2 probe was detected on the long arms of each of the homoeologous group 3 chromosomes (3A, 3B, and 3D), on 5DL and 4AL of bread wheat, and on homoeologous and nonhomoeologous chromosomes of other species. In the species tested, FISH detected more Acc-2 gene or pseudogene sites than previously found by PCR and Southern hybridization analyses and showed presence/absence polymorphism of Acc-2 sequences. FISH with the Acc-2 probe revealed the 4A–5A translocation, shared by several related diploid and polyploid species and inherited from an ancestral A-genome species, and the T. timopheevii-specific 4At–3At translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D, Lazo G, Chao SM, Anderson OD, David J, Qi LL, Echalier B, Gill BS, Gustafson MJP, La Rota M, Sorrells ME, Zhang DS, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng JH, Lapitan NLV, Wennerlind EJ, Nduati V, Anderson JA, Sidhu D, Gill KS, McGuire PE, Qualset CO, Dvorak J (2003) Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates. Proc Natl Acad Sci USA 100:10836–10841. doi:10.1073/pnas.1934431100

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Badaeva ED, Badaev NS, Gill BS, Filatenko AA (1994) Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst and Evol 192:117–145. doi:10.1007/BF00985912

    Article  Google Scholar 

  • Barker RF, Harberd NP, Jarvis MG, Flavell RB (1988) Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Mol Biol 201:1–17. doi:org/10.1016/0022-2836(88)90434-2

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D genome diploid ancestor. Genetics 167:941–947. doi:10.1534/genetics.103.016303

    Article  PubMed  CAS  Google Scholar 

  • Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gornicki P (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci USA 105:9691–9696. doi:10.1073/pnas.0803981105

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Cardoso M, Jouve N (2008a) Increasing the physical markers of wheat chromosomes using SSRs as FISH probes. Genome 51:809–815. doi:10.1139/G08-065

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Cardoso M, Jouve N (2008b) Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 120:210–219. doi:10.1159/000121069

    Article  PubMed  CAS  Google Scholar 

  • Curtis CA, Lukaszewski AJ (1991) Metaphase I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in common wheat. Genome 34:553–560. doi:10.1139/g91-085

    Article  Google Scholar 

  • Danilova TV, Birchler JA (2008) Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma 117:345–356. doi:10.1007/s00412-008-0151-y

    Article  PubMed  Google Scholar 

  • Dedkova OS, Badaeva ED, Mitrofanova OP, Bilinskaya EN, Pukhalskiy VA (2007) Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) Schuebl. using C-banding technique. Russ J of Genetics 43:1271–1285. doi:10.1134/S1022795407110105

    Article  CAS  Google Scholar 

  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets. Bioinformatics 23:2334–2336. doi:10.1093/bioinformatics/btm331

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288. doi:10.1007/BF00220890

    Article  CAS  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L. and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Diterlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31. doi:10.1139/g93-004

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Dvorak J, Yang ZL, You FM, Luo MC (2004) Deletion polymorphism in wheat chromosome regions with contrasting recombination rates. Genetics 168:1665–1675. doi:10.1534/genetics.103.024927

    Article  PubMed  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307. doi:0022-1503/96/J5.00

    Article  CAS  Google Scholar 

  • Faris J, Sirikhachornkit A, Haselkorn R, Gill B, Gornicki P (2001) Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat. Mol Biol Evol 18:1720–1733

    Article  PubMed  CAS  Google Scholar 

  • Febrer M, Goicoechea JL, Wright J, McKenzie N, Song XA, Lin JK, Collura K, Wissotski M, Yu Y, Ammiraju JSS, Wolny E, Idziak D, Betekhtin A, Kudrna D, Hasterok R, Wing RA, Bevan MW (2010) An integrated physical, genetic and cytogenetic map of Brachypodium distachyon, a model system for grass research. PLoS One 5:1–10. doi:10.1371/journal.pone.0013461

    Article  Google Scholar 

  • Feuillet C, Penger A, Gellner K, Mast A, Keller B (2001) Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol 125:1304–1313. doi:10.1104/pp.125.3.1304

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Gill BS (1994) C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica 78:1–5

    Google Scholar 

  • Friebe BR, Gill BS (1996) Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. Methods of genome analysis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Friebe B, Kim NS, Kuspira J, Gill BS (1990) Genetic and cytogenetic analyses of the a-genome of Triticum monococcum.6. Production and identification of primary trisomics using the C-banding technique. Genome 33:542–555. doi:10.1139/g90-081

    Article  CAS  Google Scholar 

  • Friebe BR, Jellen EN, Gill BS (1996) Verification of the identity of the Chinese Spring ditelosomic stocks Dt7DS and Dt7DL. Wheat Inf Serv 83:31–32

    Google Scholar 

  • Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivumAegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Article  Google Scholar 

  • Gerlach WL (1977) N-banded karyotypes of wheat species. Chromosoma 62:49–56. doi:10.1007/BF00328439

    Article  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885. doi:10.1093/nar/7.7.1869

    Article  PubMed  CAS  Google Scholar 

  • Gill BS, Chen PD (1987) Role of cytoplasm-specific introgression in the evolution of the polyploid wheats. Proc Natl Acad Sci USA 84:6800–6804

    Article  PubMed  CAS  Google Scholar 

  • Gill BS, Friebe B (1998) Plant cytogenetics at the dawn of the 21st century. Curr Opinion Plant Biol 1:109–115

    Article  CAS  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839. doi:10.1139/g91-128

    Article  Google Scholar 

  • Gornicki P, Podkowinski J, Scappino LA, DiMaio J, Ward E, Haselkorn R (1994) Wheat acetyl-coenzyme A carboxylase: cDNA and protein structure. Proc Natl Acad Sci USA 91:6860–6864

    Article  PubMed  CAS  Google Scholar 

  • Gornicki P, Faris J, King I, Podkowinski J, Gill B, Haselkorn R (1997) Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc Natl Acad Sci USA 94:14179–14184

    Article  PubMed  CAS  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517. doi:10.1093/molbev/msm077

    Article  PubMed  CAS  Google Scholar 

  • Huang SX, Sirikhachornkit A, Faris JD, Su XJ, Gill BS, Haselkorn R, Gornicki P (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol 48:805–820

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (1994) Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chrom Res 2:59–64. doi:10.1007/BF01539455

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559. doi:10.1073/pnas.0403659101

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78. doi:10.1080/10520290600643677

    Article  PubMed  Google Scholar 

  • Kawaura K, Mochida K, Enju A, Totoki Y, Toyoda A, Sakaki Y, Kai C, Kawai J, Hayashizaki Y, Seki M, Shinozaki K, Ogihara Y (2009) Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns. BMC Genomics 10:271. doi:10.1186/1471-2164-10-271

    Article  PubMed  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hort 19:13–14

    Google Scholar 

  • Kilian B, Ozkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227. doi:10.1093/molbev/msl151

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45:402–412. doi:10.1139/g01-141

    Article  PubMed  CAS  Google Scholar 

  • Lamb JC, Danilova T, Bauer MJ, Meyer JM, Holland JJ, Jensen MD, Birchler JA (2007) Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175:1047–1058. doi:10.1534/genetics.106.065573

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Sun F, Xu S, Chu X, Mukai Y, Yamamoto M, Ali S, Rampling L, Kosar-Hashemi B, Rahman S, Morell MK (2003) The structural organization of the gene encoding class II starch synthase of wheat and barley and the evolution of the genes encoding starch synthases in plants. Funct Integr Genomics 3:76–85. doi:10.1007/s10142-002-0072-4

    PubMed  CAS  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511. doi:10.1111/j.1365-313X.2004.02228.x

    Article  PubMed  CAS  Google Scholar 

  • Lysak MA, Fransz PF, Ali HB, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697. doi:10.1046/j.1365-313x.2001.01194.x

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Vu GTH, Schubert V, Watanabe K, Stein N, Houben A, Schubert I (2010) Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chrom Res 18:841–850. doi:10.1007/s10577-010-9166-3

    Article  PubMed  CAS  Google Scholar 

  • Maestra B, Naranjo T (1999) Structural chromosome differentiation between Triticum timopheevii and T. turgidum and T. aestivum. Theor Appl Genet 98:744–750

    Article  CAS  Google Scholar 

  • Matsuoka Y (2011) Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764. doi:10.1093/pcp/pcr018

    Article  PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37(81):107

    Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  Google Scholar 

  • Miftahudin RK, Ma XF, Mahmoud AA, Layton J, Milla MAR, Chikmawati T, Ramalingam J, Feril O, Pathan MS, Momirovic GS, Kim S, Chema Y, Fang P, Haule L, Struxness H, Birkes J, Yaghoubian C, Skinner R, McAllister J, Nguyen V, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak AJ, Dilbirligi M, Gill KS, Peng JH, Lapitan NLV, Bermudez-Kandianis CE, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Lazo GR, Chao S, Anderson OD, Gonzalez-Hernandez J, Conley EJ, Anderson JA, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Nguyen HT, Gustafson JP (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663. doi:10.1534/genetics.104.034827

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Ogihara Y, Shinozaki K (2009) TriFLDB: A database of clustered full-length coding sequences from Triticeae with applications to comparative grass genomics. Plant Physiol 150:1135–1146. doi:10.1104/pp. 109.138214

    Article  PubMed  CAS  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494. doi:10.1139/g93-067

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and distribution among Triticeae. Genome 38:479–486. doi:10.1139/g95-063

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Tsujimoto H, Sasakuma T (1998) Dynamics of tandem repetitive Afa-family sequences in Triticeae, wheat-related species. J Mol Evol 47:183–189

    Article  PubMed  CAS  Google Scholar 

  • Naranjo T, Roca A, Goicoechea PG, Giraldez R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882. doi:0.1139/g87-149

    Article  Google Scholar 

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Proc 1st Intern Workshop on Hulled Wheats, Castelvecchio Pascoli, Tuscany, Italy, 21–22 July 1995. Intern Plant Genet Res Inst Rome, 41-100

  • Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593. doi:10.1139/g97-077

    Article  PubMed  CAS  Google Scholar 

  • Pedersen C, Rasmussen SK, LindeLaursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39:93–104. doi:10.1139/g96-013

    Article  PubMed  CAS  Google Scholar 

  • Perez R, de Bustos A, Jouve N, Cuadrado A (2009) Localization of Rad50, a single-copy gene, on group 5 chromosomes of wheat, using a FISH protocol employing tyramide for signal amplification (Tyr-FISH). Cytogenet Genome Res 125:321–328. doi:10.1159/000235938

    Article  PubMed  CAS  Google Scholar 

  • Podkowinski J, Sroga GE, Haselkorn R, Gornicki P (1996) Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat. Proc Natl Acad Sci USA 93:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Podkowinski J, Jelenska J, Sirikhachornkit A, Zuther E, Haselkorn R, Gornicki P (2003) Expression of cytosolic and plastid acetyl-coenzyme A carboxylase genes in young wheat plants. Plant Physiol 131:763–772. doi:10.1104/pp. 013169

    Article  PubMed  CAS  Google Scholar 

  • Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157. doi:genetics.108.096941

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin GJP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712. doi:10.1534/genetics.104.034868

    Article  PubMed  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81

    Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Reporter 4:102–109. doi:10.1007/BF02732107

    Article  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1987) Molecular analysis of the D-genome of the Triticeae. Theor Appl Genet 73:385–388. doi:10.1007/BF00262505

    Article  CAS  Google Scholar 

  • Rodriguez S, Perera E, Maestra B, Diez M, Naranjo T (2000) Chromosome structure of Triticum timopheevii relative to T. turgidum. Genome 43:923–930. doi:10.1139/g00-062

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Bioscience Biotech and Biochem 68:1175–1184

    Article  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison J (2000) Practical in situ hybridization. BIOS, Oxford

    Google Scholar 

  • Schweizer GF, Baumer M, Daniel G, Rugel H, Roder MS (1995) RFLP markers linked to scald (Rhynchosporium. secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920–924. doi:10.1007/BF00222904

    Article  CAS  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Agric Expt Stn Res Bull 572:1–58

    Google Scholar 

  • Smit AFA, Hubley R, Green P (1996-2004) RepeatMasker Open-3.0. http://wwwrepeatmaskerorg

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin MA, Ma XF, Gustafson PJ, Qi LLL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao SM, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang DS, Nguyen HT, Peng JH, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827. doi:10.1101/Gr.1113003

    PubMed  CAS  Google Scholar 

  • Szakacs E, Molnar-Lang M (2007) Development and molecular cytogenetic identification of new winter wheat-winter barley (‘Martonvasari 9 kr1’-‘Igri’) disomic addition lines. Genome 50:43–50. doi:10.1139/G06-134

    Article  PubMed  CAS  Google Scholar 

  • Turnbull KM, Turner M, Mukai Y, Yamamoto M, Morell MK, Appels R, Rahman S (2003) The organization of genes tightly linked to the Ha locus in Aegilops tauschii, the D-genome donor to wheat. Genome 46:330–338. doi:10.1139/g02-124

    Article  PubMed  CAS  Google Scholar 

  • Turner M, Mukai Y, Leroy P, Charef B, Appels R, Rahman S (1999) The Ha locus of wheat: identification of a polymorphic region for tracing grain hardness in crosses. Genome 42:1242–1250. doi:10.1139/g99-075

    PubMed  CAS  Google Scholar 

  • Vershinin A, Svitashev S, Gummesson PO, Salomon B, Vonbothmer R, Bryngelsson T (1994) Characterization of a family of tandemly repeated DNS sequences in Triticeae. Theor Appl Genet 89:217–225. doi:10.1007/BF00225145

    Article  CAS  Google Scholar 

  • Wang CJR, Harper L, Cande WZ (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544. doi:10.1105/tpc.105.037838

    Article  PubMed  CAS  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311

    Article  PubMed  CAS  Google Scholar 

  • Woo SS, Jiang JM, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucl Acids Res 22:4922–4931. doi:10.1093/nar/22.23.4922

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Computational Biol 7:203–214

    Article  CAS  Google Scholar 

  • Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004a) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299. doi:10.1007/s00412-004-0273-9

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Li W, Friebe B, Gill BS (2004b) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987. doi:10.1139/g04-042

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. John Raupp for editing of the manuscript, Duane Wilson for excellent technical assistance, and Dr. Sunish Sehgal for help with the sequencing. This research was supported by grants from the Kansas Wheat Commission and the Kansas Crop Improvement Association. This is contribution number 13-029-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Friebe.

Additional information

Communicated by Ingo Schubert

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 19789 kb)

ESM 2

(DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilova, T.V., Friebe, B. & Gill, B.S. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 121, 597–611 (2012). https://doi.org/10.1007/s00412-012-0384-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-012-0384-7

Keywords

Navigation