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Abstract Homologous recombination is required for main-
taining genomic integrity by functioning in high-fidelity
repair of DNA double-strand breaks and other complex
lesions, replication fork support, and meiotic chromosome
segregation. Joint DNA molecules are key intermediates in
recombination and their differential processing determines
whether the genetic outcome is a crossover or non-crossover
event. The Holliday model of recombination highlights the
resolution of four-way DNA joint molecules, termed Holliday
junctions, and the bacterial Holliday junction resolvase RuvC
set the paradigm for the mechanism of crossover formation. In
eukaryotes, much effort has been invested in identifying the
eukaryotic equivalent of bacterial RuvC, leading to the
discovery of a number of DNA endonucleases, including
Mus81-Mms4/EME]1, SIx1-Slx4/BTBD12/MUS312, XPF—
ERCCI, and Yenl/GENI1. These nucleases exert different
selectivity for various DNA joint molecules, including
Holliday junctions. Their mutant phenotypes and distinct
species-specific characteristics expose a surprisingly
complex system of joint molecule processing. In an
attempt to reconcile the biochemical and genetic data, we
propose that nicked junctions constitute important in vivo
recombination intermediates whose processing determines the
efficiency and outcome (crossover/non-crossover) of homolo-
gous recombination.
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Introduction

Homologous recombination (HR) is a conserved mechanism
of high-fidelity DNA repair necessary for maintaining
genomic stability. HR is required for accurate chromosome
segregation during meiosis and constitutes a key pathway for
the repair of DNA double-strand breaks (DSBs), DNA gaps,
and interstrand crosslinks. Moreover, HR is required to
recover stalled and broken replication forks (reviewed by Li
and Heyer 2008). Through the combined efforts of yeast
genetics and reconstituted in vitro assays, a detailed
mechanistic understanding of recombination has been devel-
oped (Fig. 1) (Heyer 2007; Krogh and Symington 2004;
Paques and Haber 1999). In its simplest form, Replication
Protein A (RPA) bound to single-stranded DNA (ssDNA)
provides the substrate to initiate HR. Mediator proteins assist
in the replacement of RPA by the key recombination protein,
Rad51. The resulting Rad51-DNA filament performs
homology search and DNA strand invasion, the signature
reactions of HR. A DNA joint molecule intermediate called
the displacement loop (D-loop) provides physical pairing
between two otherwise discrete DNA double helices (Fig. 1).
Additional DNA junction intermediates, including flaps,
nicked or intact Holliday, or double Holliday junctions
(HJs), are envisioned to form as a consequence of branch
migration, DNA synthesis, or second-end capture (Fig. 1). In
order to reconstitute two independent DNA duplex strands,
all domains of life have evolved a collection of structure-
selective endonucleases which cleave DNA joint molecules
with distinct substrate specificity (Table 1). In this review, we
start out by briefly elaborating the bacterial RuvC paradigm
that guided the search for eukaryotic Holliday junction
resolvases, followed by a discussion of the nucleases that
were proposed to cleave Holliday junctions in eukaryotes.
The biochemical properties of the eukaryotic enzymes and
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Fig. 1 Multiple DNA repair pathways are employed during double-
strand break repair. After DNA DSB formation, the broken ends can
be religated using minimal to no nucleotide homology through non-
homologous end joining (VHEJ). Alternatively, 5’ ends are resected to
expose single-stranded DNA favoring alternate routes of DSB repair.
The presence of direct DNA sequence repeats may provide homolo-
gous regions that can anneal to form a contiguous chromosome in a
process called single-strand annealing (SSA). Heterologous 3’ flaps are
removed by the XPF endonuclease aided by SIx4 and Sawl.
Alternatively, Rad51-dependent homology search and strand invasion
forms a displacement loop (D-loop) to prime DNA synthesis from the
3'-OH end of the broken chromosome on an intact template. Extension
of the D-loop and subsequent D-loop disruption and reannealing to the
second end repairs the break via synthesis-dependent strand annealing
(SDSA) resulting in noncrossover (NCO) products (Resnick 1976).

their in vivo functions, as deduced from genetic analysis,
challenge the expectations based on the RuvC paradigm and
the classical models involving HJs or double Holliday
junctions. Finally, we attempt to integrate the biochemical
and genetic data to provide a coherent model, which features
a degree of plasticity between different eukaryotic organisms
and places the cleavage of nicked joint molecules in a
prominent position.

Holliday junctions and the bacterial RuvC paradigm

In a lucid analysis of fungal tetrad data, Robin Holliday
proposed a mechanistic model for HR (Fig. 2) containing two
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Formation of an intact replication fork leads to the continuous
extension of the D-loop to the end of the chromosome, defining the
break-induced replication (BIR) pathway and resulting in loss of
heterozygosity (LOH) (Malkova et al. 1996). The elongated D-loop
forms a junction, where branch migration may lead to the formation of
a single Holliday junction (sHJ). In the event of second-end capture,
the displaced strand of the D-loop anneals to the other resected 3’
strand forming first two nicked Holliday junctions (nF.J) and after
ligation a double Holliday junction (dHJ) (Szostak et al. 1983).
Double HJs can be dissolved by the combined activities of a DNA
motor protein (S. cerevisiae Sgsl or human BLM) and a type IA
topoisomerase into NCO products (Wu and Hickson 2003; Cejka et al.
2010) or resolved by coordinated endonuclease cleavage into CO or
NCO products (Szostak et al. 1983). Single HJs require resolution by a
nuclease and cannot be processed by a dissolution mechanism like dHJs

major intermediates, heteroduplex DNA and a four-armed
DNA junction intermediate, later termed the Holliday
junction (Holliday 1964). For an informative discussion of
recombination models and their evolution, see Haber (2008).
It was envisioned that the coordinated, symmetrical cleavage
of HJs across one of two alternative planes, as indicated in
Fig. 2, could provide the mechanistic basis for the formation
of crossover (CO) and non-crossover (NCO) recombinants.
Support for this model came with the identification of
proteins in phage and prokaryotes with the enzymatic ability
to cleave synthetic HJs in vitro, coined HJ resolvases
(Connolly et al. 1991; Iwasaki et al. 1991; Mizuuchi et al.
1982). Biochemical characterization of the Escherichia coli
HJ resolvase RuvC and its associated proteins RuvA and
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Table 1 Structure-selective endonucleases exhibit an array of species-
specific differences. Organized by a single identifying subunit,
eukaryotic homologs are listed with species designation. Information

on their known binding partners, respective endonuclease superfamily,
and mechanistic pathway involvement are provided

Indentifying Protein complex Endonuclease Known in vivo References

subunit family function(s)

Radl ScRadl-Rad10 XPF NER, ICL, SSA (Cox and Parry 1968; Fishman Lobell et al. 1992)
SpRad16-Swil0 XPF NER, MTS (Carr et al. 1994; Schmidt et al. 1989)
ARADI1-RADI10 XPF NER, ICL, SSA (Gallego et al. 2000; Dubest et al. 2002)
DmMEI-9-ERCCI XPF NER, ICL, Meiosis (Radford et al. 2005)
HsXPF(ERCC4)-ERCC1 XPF NER, ICL (Biggerstaff et al. 1993; van Vuuren et al. 1993)

MusS81 ScMus81-Mms4 XPF HR, RF, Meiosis, ICL (Interthal and Heyer 2000)

SpMus81-Emel XPF HR, RF, Meiosis (Boddy et al. 2000)
AMUS-EMEA/EMEB XPF HR, RF (Berchowitz et al. 2007)
DmMUS81-EMEL1 XPF HR (Johnson-Schlitz and Engels 2006; Trowbridge et al. 2007)
Hs/MmMUSS81-EMEI1 XPF HR, ICL (Abraham et al. 2003; Dendouga et al. 2005;
Svendsen et al. 2009)

Yenl ScYenl Rad2/XPG N/D
DmGEN Rad2/XPG N/D
CeGEN-1 Rad2/XPG DSBR (Bailly et al. 2010)

HsGENI Rad2/XPG N/D

Six4

ScSlx4 complexes

Rad1-Rad10-Slx4 XPF SSA (Flott et al. 2007)
Slx1-Slx4 UIY-YIG rDNA (Kaliraman and Brill 2002)
SpSlx4 complexes

SIx1-SIx4 UIY-YIG rDNA (Coulon et al. 2004)
DmMUS312 complexes

MEI-9-ERCC1?7-MUS312 XPF NER, ICL, Meioses (Yildiz et al. 2002)
SLX1-MUS312 UIY-YIG N/D

CeHIM-18 complexes HR, RF, DSBR, meioses (Saito et al. 2009)
XPF-ERCC1?-HIM-18 XPF N/D

SLX1-HIM-18 UIY-YIG N/D

HsBTBDI12 complexes

XPF-ERCC1?7-BTBD12  XPF N/D

MUS81-EME1?-BTBD12 XPF N/D

SLX1-BTBDI12 UIY-YIG HR, ICL, DSBR (Andersen et al. 2009; Fekairi et al. 2009;

Svendsen et al. 2009; Munoz et al. 2009)

N/D not determined, NER nucleotide excision repair, SSA single-strand annealing, MTS mating-type switching, /R homologous recombination,
RF replication fork support, /CL interstrand crosslink repair, 7DNA ribosomal DNA maintenance, DSBR double-strand break repair

RuvB sets the paradigm for future resolvases (Bennett et al.
1993; West 1997). RuvB is a DNA motor protein which
oligomerizes into a double-hexameric ring on DNA and is
tethered to two arms of a HJ through four subunits of RuvA
(Fig. 2). This complex drives the migration of HJs to the
preferred DNA sequence context for incision by the RuvC
dimer. Symmetric cleavage results in perfect nicked duplexes
capable of being directly ligated (reviewed by West (1997)).
Depending on the cleavage axis, either a CO or NCO event
is generated (Fig. 2).

In addition to cleaving HJs, resolvases such as phage T4
endonuclease VII and T7 endonuclease I, as well as

bacterial RuvC, have shown activity on a variety of
complex DNA lesions and other joint molecules in vitro
(Benson and West 1994; Murchie and Lilley 1993; Jensch
et al. 1989; Jensch and Kemper 1986). Incision site
mapping of the resulting products identifies two symmet-
rical cuts even in the presence of asymmetric lesions or
substrates (Murchie and Lilley 1993; Jensch et al. 1989;
Jensch and Kemper 1986; Birkenkamp and Kemper 1995).
These observations demonstrate the highly specialized role
of these enzymes for the dual, coordinated cleavage of
target substrates, unlike the single incision event that occurs
for flap endonucleases such as XPF-ERCC1 or XPG
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Fig. 2 Holliday model and the RuvC paradigm. a The Holliday
model involves the nick-stimulated formation of heteroduplex DNA
(hDNA) and an intact four-way DNA joint intermediate, termed a
Holliday junction (#J). The mismatch repair of hDNA leads to gene
conversion and the endonucleolytic processing of the junction leads to
crossover (CO) or non-crossover (NCO) products. b HJs can exist in a
parallel stacked, anti-parallel stacked, or open planar confirmation
depending on in vitro buffer conditions and protein binding. ¢ E. coli
resolvase RuvC acts in conjunction with the HJ binding tetramer
RuvA and two hexameric rings of the RuvB motor. RuvA binding
induces an open planar HJ conformation, ideal for RuvC cleavage.
RuvB branch migrates the junction towards the preferred sequence for
coordinated RuvC cleavage of alternate strands to form two linear
duplexes compatible with direct ligation

(Guzder et al. 1995; Aboussekhra et al. 1995). Resolvases
also generally display substrate specificity for HJs over
other intact DNA substrates (Benson and West 1994;
Whitby and Dixon 1998; Dickie et al. 1987).

As illustrated in Fig. 1, the current HR models are
derived from Holliday’s original proposal and feature single
Holliday junctions (sHJ) or double Holliday junctions
(dHJ). The dHJ was introduced as a key intermediate in

@ Springer

DSB-initiated HR (Szostak et al. 1983). In an application of
the RuvC paradigm, it was envisioned that the alternative,
symmetric cleavage of dHJs, as indicated in Fig. 1, could
result in CO and NCO products, a mechanism termed dHJ
resolution. An alternate mechanism, termed dHJ dissolu-
tion, proposes that the two individual junctions of a dHJ
can be migrated towards each other to form a hemi-
catenane which is untangled by a type IA topoisomerase,
generating exclusively NCO products (Fig. 1) (Wu and
Hickson 2003). Single HJs may form during synthesis-
dependent strand annealing (SDSA) or break-induced
replication (BIR) by branch migration of the initial D-loop
(Fig. 1). However, the paucity of COs during DSB repair in
somatic budding yeast cells suggested that SDSA does not
involve HJs (Paques and Haber 1999). The repair of one-
sided DSBs by HR to restore a full replication fork, which
is formally equivalent to BIR, may result in an sHJ that
requires endonucleolytic resolution (see Fig. 1). Impor-
tantly, an sHJ is not amenable to the dissolution pathway.
Physical analysis in both bacteria (Kobayashi and Ikeda
1983) and yeast confirmed the presence of sHJs (Cromie et
al. 2006) and dHJs (Bzymek et al. 2010; Schwacha and
Kleckner 1995) as meiotic and mitotic recombination
intermediates in vivo. The observed mitotic dHJ levels are
tenfold less than in meiotic cells per DSB (Bzymek et al.
2010). However, it is unclear whether this reduction in the
steady-state level of mitotic dHJs reflects a real reduction in
the proportion of DSBs repaired through this intermediate,
less stability of dHJs in mitotic cells than in meiotic cells,
or differences in the structure between meiotic and mitotic
dHJs that affect the efficiency of the crosslinking procedure
(Bzymek et al. 2010).

One of the key challenges has been the identification of
enzymes acting on HJs in eukaryotes, and the focus has
been to identify eukaryotic HJ resolvases that conform to
the RuvC paradigm. This paradigm provided an assay, i.e.,
cleavage of four-armed DNA structures, and specific
parameters such as specificity for HJs over other junctions,
symmetric cleavage of HJs, and directly religatable prod-
ucts. With such a robust assay and predictions at hand, the
first eukaryotic HJ cleavage activity was identified in the
budding yeast Saccharomyces cerevisiae and was attributed
to the mitochondrial endonuclease, Ccel (SpYdc2) (Kleff et
al. 1992). Considering the bacterial origin of mitochondria,
this finding was gratifying but failed to address the identity
of the nuclear eukaryotic enzymes. Further work identified
a surprising complexity and plasticity of DNA structure-
selective endonucleases in eukaryotes in their ability to
cleave a multitude of DNA junctions and joint molecule
structures. These findings defy the clarity and attractive
simplicity of the RuvC paradigm, and below we discuss
these eukaryotic enzymes, their substrate selectivity, and
biological functions as deduced from genetic analysis.
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XPF endonuclease superfamily

S. cerevisiae Rad1-Rad10/Drosophila melanogaster
MEI9-ERCC1/human XPF-ERCC1

RADI was originally identified in S. cerevisiae in a screen
for mutants that rendered cells hypersensitive to ultraviolet
(UV) radiation (Cox and Parry 1968). Radl is the budding
yeast homolog of human XPF, representing a ubiquitous
class of proteins in eukaryotes, whose primary role appears
to be in nucleotide excision repair (NER) (Table 1; Fig. 3)
(Ciccia et al. 2008). XPF denotes complementation group F
of xeroderma pigmentosum, a human cancer predisposition
syndrome caused by the failure to repair UV-induced DNA
damage by NER or tolerate such damage by translesion DNA
polymerase bypass.

Radl, as all of its eukaryotic homologs, associates with
another protein, Rad10 in S. cerevisiae, in a heterodimeric
complex (Table 1; Fig. 3). During NER, this complex
provides the 5’ incision, whereas another endonuclease,
Rad2 (XPG in humans), delivers the 3’ incision to liberate the
damage-containing oligonucleotide (Fig. 4) (Aboussekhra et
al. 1995; Guzder et al. 1995). In addition to its well-
documented role in NER, S. cerevisiae Radl-Rad10 has
been known to participate in additional mechanisms of DNA
metabolism. Genetic analysis showed that Rad1-Radl0
functions in a form of intrachromosomal recombination
termed single-strand annealing (SSA; Fig. 1) (Fishman
Lobell and Haber 1992; Aguilera 1995; Ivanov and Haber
1995; Liefshitz et al. 1995; Prado and Aguilera 1995). SSA
involving ends with 30 nucleotides or greater 3’-terminal
heterologies requires Rad1-Rad10 to remove the heterolo-

gous tails that result from strand annealing (Figs. 1 and 4)
(Paques and Haber 1997; Fishman Lobell and Haber 1992;
Aguilera 1995; Ivanov and Haber 1995). A similar function
of Rad1-Rad10 was identified in microhomology-mediated
end-joining (Ahmad et al. 2008; Lee and Lee 2007).
Furthermore, genetic analysis indicates that Rad1-Rad10 also
participates in the removal of covalent topoisomerase [-DNA
complexes (Vance and Wilson 2002). Lastly, Rad1-Rad10 is
required for the repair of long heterologies in meiotic
heteroduplex DNA (Fig. 4) (Kearney et al. 2001). The
involvement of Radl in multiple repair and recombination
pathways suggests that the complex is under tight regulation
and control, perhaps driven by posttranslational modification
or context-specific protein interactions. Supporting both
possibilities, budding yeast Radl has been shown to
physically interact also with Slx4 in a phosphorylation-
dependent manner (Toh et al. 2010; Lyndaker et al. 2008).
Likely acting as a scaffolding protein, Slx4 interaction
stimulates Radl-Rad10 activity on 3’ flap substrates in
SSA, but SIx4 has no role in NER (Toh et al. 2010;
Lyndaker et al. 2008). Another SSA-specific interactor of
Radl is Sawl that, like Slx4, plays a role in maintaining
ribosomal DNA integrity (Li et al. 2008), suggesting that
SSA is an important pathway to maintain rDNA stability.
The biochemical analysis of S. cerevisiae Radl has
identified a number of potential in vivo joint molecule
substrates (Fig. 4). In addition to bubble and flapped
substrates, budding yeast Radl was reported to also
specifically bind and cleave synthetic HJ structures in vitro
(Habraken et al. 1994). This activity was observed in the
absence of its obligatory partner Rad10 and may be specific
to branch-migratable HJs which undergo molecular breathing

Rad1 Rad10 Mus81 Mms4 Six1 Six4 Yen1/GEN1
S. cerevisiae | ] [ ] AR 71 [ ] I ]
ScRad1 (1100) ScRad10 (210) ScMus81 (632) ScMms4 (691)  ScSxi1 (304) ScSix4 (748)  ScYent (759)
S. pombe [ 1 1 71 [ 71 [ — N/D
SpRad16 (892)  SpSwil0 (252) SpMus81 (608) SpEmet (738) SpSxit (271) SpSix4 (419)
A. thaliana L 11 1 1 71 [ 22717 N/D N/D 1]
AMRAD1 (956)  ARAD10 (410) AMUS81 (660) AEMEA (549) AIGEN1 (599)
| 2z 1Y
AEMEB (551)
D. melanogaster [ 1 | [ 71 % 7 [ 0 ] ]
DmMEI-9 (926) DMERCC1 (259) DmMUS81 (426) DmMMS4 (309) DmSLX1 (297) DmMUS312 (1145)  DmGEN (726)
C.elegans | ] N/D N/D N/D ]
CeXPF-1 (935) CeSLX-1 (443) CeHIM-18 (718)  CeGEN-1 (434)
H. sapiens [ 1 [ ] [ | [ 71 1 ] I ]
HsXPF(ERCC4) (916) HSERCC1 (210) HsMUS81 (551) HSEME1 (583) HsSLX1 (275) HsBTBD12 (1834) HsGEN1 (908)
W//7AN
HSEME2 (444)

Wit \nactive DEAH
Functional ERCC4 7
Inactive ERCC4

Helix-hairpin-helix (HhH)
Pseudo HhH

. URI

| BTB
Il XPG-Nand XPG-I
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B RING, Zinc finger
SAP
7. Pseudo SAP

Fig. 3 Domain structure and architecture of eukaryotic structure-
selective junction endonucleases. The conserved domains of selected
endonucleases were identified using Universal Protein Database (Uni-

Prot) and NCBI Conserved Domain Search software. The respective
protein names and amino acid lengths are noted below each protein.
Domains are identified as described in the key. N/D, not discovered
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Fig. 4 Substrate specificity of
eukaryotic structure-selective
junction endonucleases. Mapped
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to form a temporary bubble structure (see Fig. 4) that is
readily cleavable by the enzyme (Davies et al. 1995; West
1995). The current DSB repair paradigm predicts the
formation and resolution of HJs for proper CO formation,
connecting meiotic phenotype with proper HJ resolution.
Under this assumption, nucleases observed to have disruptive
phenotypes in meiosis are often assumed to play a role in HJ
resolution. As a proposed HJ resolvase, Radl would be
predicted to have a meiotic phenotype. However, there is no
genetic evidence in budding or fission yeast for an involve-
ment of Rad1-Rad10 or Rad16-Swil0, respectively (Table 1),
in meiotic CO formation ((Dowling et al. 1985); reviewed in
Heyer et al. (2003)). Contrary to the situation in budding and
fission yeast, in D. melanogaster, meiotic COs are largely
dependent on the fly XPF homolog, MEI-9 (Sekelsky et al.
1995; Carpenter and Sandler 1974). MEI-9 is undoubtedly
the XPF homolog in flies, as mutants in this gene also
display the UV and interstrand crosslink sensitivities
expected for an NER defect (Table 1) (Radford et al. 2007;
Yildiz et al. 2004; Sekelsky et al. 1995). Moreover, these
DNA repair defects are identical to the mutant phenotypes of
the ERCCI homolog (Radford et al. 2005), suggesting that
NER is also catalyzed in D. melanogaster by the MEI-9—
ERCCI heterodimeric nuclease, as in all other eukaryotes
studied to date (Fig. 3; Table 1). However, ERCCI mutations
cause a significantly milder defect in meiotic CO formation
than MFEI-9 mutants (Radford et al. 2005), suggesting that
MEI-9 may participate with an alternate subunit for this
function. Supporting this conjecture, MEI-9 also interacts
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with the fly SIx4 homolog, MUS312. Mutations in MUS312
cause a severe CO defect comparable to mutations in MEI-9
(Andersen et al. 2009; Yildiz et al. 2002). In both yeast and
flies, the XPF homolog has two different non-nuclease
interaction partners, Rad10 and Slx4 in yeast and the
homologous ERCC1 and MUS312 in flies. However, the
functions of these complexes are clearly different as, unlike
fly MEI-9 and MUS312, yeast Radl and Slx4 have no
apparent role in meiotic CO formation ((Dowling et al. 1985;
Mullen et al. 2001); reviewed in Heyer et al. (2003)).

A comparison of XPF and XPF protein complexes
between yeasts (budding and fission yeast) and D.
melanogaster reveals a surprising plasticity in their in vivo
functions. While in all organisms studied XPF-ERCC1 acts
in NER and interstrand crosslink repair, the XPF—-ERCC1—
SLX4 complex functions in yeast in SSA but not in meiotic
CO formation, whereas in flies XPF-ERCCI1-SLX4
(MUS312) are responsible for the great majority of meiotic
COs. It will be interesting to compare the biochemical
characteristics of these protein complexes from yeast and
flies to determine if the junction specificity differs between
the two species and accounts for the difference in
generating meiotic COs.

S. cerevisiae Mus81-Mms4/Schizosaccharomyces pombe
MUS81-EME1/human MUS81-EME1

Mus81 was identified in two-hybrid screens using the
recombination protein Rad54 as bait in S. cerevisiae
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(Interthal and Heyer 2000) and the damage response kinase
Cdsl (ScRad53, human CHK2) as bait in fission yeast
(Boddy et al. 2000). Similar to other XPF family
endonucleases, Mus81 forms a heterodimer with a non-
nucleolytic subunit: Mms4 in budding yeast or EMEI in
fission yeast and humans (Fig. 3; Table 1) (Boddy et al.
2001; Kaliraman et al. 2001; Mullen et al. 2001). Mus81
and Mms4/EME1 are required for the recombination-
mediated DNA repair at replication forks, playing a key
role in replication fork restart, and in yeast meiotic
recombination. In S. cerevisiae, S. pombe, Arabidopsis
thaliana, and D. melanogaster, Mus81 is essential in the
absence of the dHJ dissolution complex, Sgs1-Top3—Rmil
(Boddy et al. 2000; Mullen et al. 2001; Trowbridge et al.
2007; Hartung et al. 2006). In budding yeast and
Drosophila, this synthetic lethality was largely suppressed
by the loss of ScRad51 and its homolog, DmSPN-A,
providing evidence that the joint molecules processed by
Mus81 and Sgsl-Top3—Rmil are late HR intermediates,
possibly resulting from the repair of ssDNA gaps accumu-
lated during DNA replication (Trowbridge et al. 2007
Fabre et al. 2002; Ti and Brill 2005; Bastin-Shanower et al.
2003). The physical interaction between Mus81 and the key
recombination protein Rad54 may suggest that Rad54
targets Mus81 to specific recombination-derived joint
molecules (Mimida et al. 2007; Interthal and Heyer 2000).
Supporting biochemical evidence in both S. cerevisiae and
humans showed the Rad54-dependent stimulation of
Mus81 activity on a variety of synthetic joint molecules
(Matulova et al. 2009; Mazina and Mazin 2008).

Loss of either MUSS81 or MMS4/EME]1 in budding yeast
and metazoans significantly increases the number of gross
chromosomal rearrangements during normal cellular divi-
sion (Zhang et al. 2006; Dendouga et al. 2005; Abraham et
al. 2003). Specifically in somatic cells, Mus81 appears to
be required for HR at stalled or broken replication forks
(Heyer 2007; Hollingsworth and Brill 2004; Osman and
Whitby 2007). Supporting this idea, most eukaryotic cells
with defects in either gene display hypersensitivity to a
variety of replication fork stalling agents, including the
alkylating agent methyl methanesulfonate (MMS), the
ribonucleotide reductase inhibitor hydroxyurea (HU), and
topoisomerase I inhibitors, such as camptothecin (CPT)
(Boddy et al. 2000; Interthal and Heyer 2000; Deng et al.
2005; Hartung et al. 2006; Berchowitz et al. 2007; Froget et
al. 2008; Hanada et al. 2007). Mouse cells defected in
MUSS81-EME] are selectively hypersensitive to interstrand
crosslinking (ICL) agents (Abraham et al. 2003; Dendouga
et al. 2005), whereas human HeLa cells show only a mild
CPT sensitivity upon MUSS8! depletion (Svendsen et al.
2009). Plasmoduction experiments in budding yeast with
palindromic plasmids suggested a role of Mus8§1-Mms4 in
the resolution of extruded cruciforms, a substrate that

mimics an sHJ (Cote and Lewis 2008). However, it is
difficult to determine the exact structure of the cleaved
intermediate from the product analysis performed, and it is
possible that during DNA replication snap-back structures
that contain a nick formed.

In meiotic CO formation, the importance of Mus8&l
varies greatly from species to species. In budding yeast and
mammals, COs are controlled by two main pathways, one
dependent on Mus81 and the second requiring the activities
of Msh4-MshS5, two proteins with similarity to the MutS
class of mismatch repair proteins (Edelmann et al. 1999;
Holloway et al. 2008; Abdullah et al. 2004; Khazanehdari
and Borts 2000; Ross-Macdonald and Roeder 1994)
(Fig. 5). Unlike the Msh4-Msh5 pathway, Mus81-
dependent COs do not exhibit CO interference and COs
occur randomly across the chromosomes (de los Santos et
al. 2001, 2003; Interthal and Heyer 2000; Whitby 2005; Oh
et al. 2008). Approximately 35% of meiotic COs in S.
cerevisiae are dependent on Mus81 (Fig. 5) (de los Santos
et al. 2001, 2003; Interthal and Heyer 2000; Oh et al. 2008).
However, in S. pombe, loss of Mus81 function results in a
severe reduction of spore viability (0.1% vs. 80% in wild
type) and a dramatic reduction in meiotic COs (Boddy et al.
2000, 2001; Smith et al. 2003). Contrary to fission and
budding yeast, mice defective in MUSS8! exhibit rather
minor meiotic phenotypes (Holloway et al. 2008; McPherson
et al. 2004). Similarly, Arabidopsis and fly MUS81 make a
moderate to no contribution towards meiotic CO formation
(Hartung et al. 2006; Berchowitz et al. 2007; Trowbridge et
al. 2007; Johnson-Schlitz and Engels 2006).

It is notable that, while Mus81 plays a significant role in
meiotic HR, a DSB-initiated event in budding and fission
yeast, Mus81 is not required for DSB survival in mitotic cells
(Boddy et al. 2000; Interthal and Heyer 2000; Ho et al. 2010).
Neither metazoans nor fungal mus8l-deficient cells are
sensitive to IR or endonuclease-induced DSBs, which require
HR for repair. However, using a chromosomal system to
detect unselected products of mitotic recombination, Ho et al.
(2010) showed a reduction of CO formation following Sce-I-
induced DSB formation in mus8/ mutants. Without loss of
viability, events were channeled in mus8/ mutants to NCO
and BIR outcomes (Ho et al. 2010). While these important
results implicate Mus81-Mms4 in CO formation in mitotic
cells, the nature of the intermediate cleaved by Mus81-Mms4
cannot be determined by these genetic studies.

Mus81-deficient yeast cells are very sensitive to the
topoisomerase | inhibitor camptothecin, which is believed
to lead to replication-dependent one-sided DSBs that can be
recovered by HR similar to BIR as drawn Fig. 1 (Pommier
2006). This might suggest a role of Mus81-Mms4 in one-
sided DSB repair, consistent with observations in fission
yeast (Roseaulin et al. 2008). However, camptothecin has
also been shown to result in topologically stalled forks
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Fig. 5 Meiotic crossover pathways in eukaryotes. a In meiosis,
double-strand breaks are catalyzed by Spoll. These breaks are
processed to form single-stranded 3’ ends capable of strand exchange
and D-loop formation. Single-end invasion (SEI) events commit the
break into a pathway that results in crossover (CO) and chiasma
formation (Hunter and Kleckner 2001). b Eukaryotes have evolved
multiple pathways for CO formation as denoted by their genetic
definition. Because residual CO formation still remains after the
elimination of two or more of these CO pathways, an empty box
represents CO formation dependent on yet unknown pathways. ¢ For
each pathway in b, CO contribution in percent is organized in pie

(Koster et al. 2007), and Mus81-Mms4 might act on these
substrates instead of one-sided DSBs (Froget et al. 2008).
Biochemical studies with purified Mus81-Mms4/EMEI
complexes from budding and fission yeasts, as well as
humans, have generated a wealth of data regarding the
substrate preference for these enzymes (Heyer 2007,
Hollingsworth and Brill 2004; Osman and Whitby 2007,
Ciccia et al. 2008). Difficulties in purifying catalytically
active complexes containing the full-length proteins com-
plicate the analysis and required that the experiments were
performed with significant excess of protein over substrate
under single turnover conditions (Bastin-Shanower et al.
2003; Boddy et al. 2001; Chen et al. 2001; Ciccia et al.
2003; Whitby et al. 2003; Smith et al. 2003; Cote and
Lewis 2008; Taylor and McGowan 2008; Constantinou et
al. 2002; Gaskell et al. 2007; Doe et al. 2002; Osman et al.
2003; Chang et al. 2008). Classical Michaelis—Menten
analysis of catalytically active Mus81-Mms4 under con-
ditions of excess substrate added clarity to the question of
in vitro substrate specificity (Ehmsen and Heyer 2008,
2009; Fricke et al. 2005). There is significant congruence in
these studies, which showed that Mus81-Mms4/EME1
from all organisms studied greatly prefer substrates that
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graphs for several eukaryotes. Potential overlapping activities in CO
formation between the MSH4-MSHS and SLX4 are observed in C.
elegans and are designated as striped sector. A subtle role for mouse
MUSS81 in meiosis has been proposed with histological and
cytological data, but no quantification has been made to assess the
degree of CO contribution (McDonald and Rothstein 1994; de los
Santos et al. 2001, 2003; Argueso et al. 2004; Osman et al. 2003;
Berchowitz et al. 2007; Yildiz et al. 2002, 2004; Radford et al. 2005,
2007; Zalevsky et al. 1999; Saito et al. 2009; Edelmann et al. 1999;
Holloway et al. 2008)

contain a discontinuity or nick adjacent to the branch point
of the junction (Fig. 4). This is supported by structural
evidence from archaeal XPF family members which share
the requirement for a 5’ end near a junction for structural
specificity and flexibility of the duplex arms for DNA joint
cleavage (Bastin-Shanower et al. 2003; Fricke et al. 2005;
Roberts and White 2005a, b; Ehmsen and Heyer 2008,
2009). Also, the available structural information on MUS81—
EMEI protein suggests that nicked substrates are favored, as
the arms of nicked junctions are flexible to position the
incision point into the catalytic site (Chang et al. 2008).
The discordance is in the interpretation of the activity of
Mus81-Mms4/EME1 on substrates mimicking HIJs
(reviewed in Heyer 2007; Hollingsworth and Brill 2004;
Osman and Whitby 2007; Ciccia et al. 2008). The activity
of Mus81-Mms4/EME1 on HJ substrates with four
contiguous strands is very significantly lower than on the
preferred nicked substrates. For example, full-length human
MUSS81-EMEI cleaves model replication forks and 3’ flap
structures 75-fold more efficiently than stationary HJs
(Ciccia et al. 2003). Furthermore, there is some disagree-
ment about the substrate selectivity in two studies that
analyze near-identical N-terminal truncations of both sub-
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units in the human MUS81-EMEI complex (Chang et al.
2008; Taylor and McGowan 2008). In one study, no
difference to the full-length protein was discovered with
no significant cleavage of HJs (Chang et al. 2008). Another
study showed cleavage of HJs with tenfold excess of
protein and of extruded cruciforms with at least 40-fold
excess that was still less efficient than the cleavage of
nicked junctions or 3’ flaps (Taylor and McGowan 2008). It
will be interesting to understand the reasons for this
apparent difference. The budding yeast enzyme also cleaves
a variety of joint molecules much better than HJs (Fricke et
al. 2005; Ehmsen and Heyer 2008). Note that 3’ flaps are
one of the preferred substrates together with replication
forks, nicked HJs, and D-loops showing a low nanomolar
Ky, whereas HJ cleavage was so inefficient that kinetic
parameters could not be determined (Ehmsen and Heyer
2008; Fricke et al. 2005). The observed HJ cleavage was
asymmetrical across the junction, producing unligatable
nicks along the four-way junction, suggesting the presence
of two uncoordinated cleavage events, unlike the paradig-
matic RuvC resolvase model (Constantinou et al. 2002;
Ehmsen and Heyer 2008; Chen et al. 2001; Boddy et al.
2001; Gaskell et al. 2007; Gaillard et al. 2003; Osman et al.
2003). Mus81 activity on HJs may be subjected to
posttranslational control after DNA damage. However,
Mus81-Mms4 purified from S. cerevisiae after DNA
damage induction also exhibited no detectable HJ cleavage
(Ehmsen and Heyer 2008). There is also the possibility of
an associating factor that modulates substrate specificity,
but no candidate has been identified yet genetically or
biochemically. Another possible explanation is species-
specific differences in enzyme properties, but this has been
directly tested and excluded for the budding and fission
yeast enzymes (Gaskell et al. 2007).

In summary, Mus81-Mms4/EME] plays an important role
in DNA repair and replication fork support in somatic cells in
all organisms studied; however, its contribution to meiotic CO
formation displays a considerable variation from organism to
organism (Fig. 5). This species-dependent variation mirrors
the situation with XPF discussed above, suggesting flexibil-
ity in which particular XPF family endonuclease is utilized
for meiotic CO formation. There is a wide consensus that
Mus81-Mms4/EME1 endonucleases from all organisms
studied have strong a preference for nicked junction
substrates over classical HJ substrates. However, much of
the biological significance of the Mus81 endonuclease,
specifically its role in CO formation, has been attributed to
its cleavage of HJs, which is low at best. As discussed at the
end, this interpretation is largely model-driven (Figs. 1 and
2) and based on the assumption that, in vivo, the majority of
recombination intermediates are HJs with four uninterrupted
strands (i.e., lacking a nick). Later, we will present an
alternative model and revisit some of these key assumptions.

Yenl/GEN1: Rad2/XPG endonuclease superfamily

GEN1 was first identified in rice as OsSEND-1 (Furukawa et
al. 2003) and later in Drosophila as DmGEN (Ishikawa et al.
2004) in a search for novel Rad2 family endonucleases.
Named for XPG-like endonuclease, GEN contains both N-
terminal and internal conserved Rad2/XPG family nuclease
domains with significant homology to the XPG homolog
MUS201 (Fig. 3) (Ishikawa et al. 2004; Kanai et al. 2007).
Rad2 (XPG in humans) delivers the 3’ incision to liberate the
damage-containing oligonucleotide during NER (Fig. 4).
Preliminary biochemical characterization on E. coli-expressed
DmGEN identified exo- and endonuclease activities on
gapped and intact duplex DNA (Ishikawa et al. 2004). A
subsequent biochemical analysis of full-length recombinant
GEN used an extensive panel of oligonucleotide-based
substrates. Similar to its XPG homolog, DmGEN exhibited
5" flap endonuclease activity and a weak 5'-to-3' exonuclease
activity on nicked duplex substrates (Kanai et al. 2007).
However, unlike its Rad2 family counterparts, DmGEN was
unable to cleave a bubble structure and instead showed
preference towards substrates mimicking stalled replication
forks (Kanai et al. 2007). Interestingly, purified full-length
DmGEN was unable to cleave intact HJ substrates with
almost eightfold molar excess protein over substrate (Kanai et
al. 2007). The authors concluded that DmGEN was a flap
endonuclease, which constituted a new class of the Rad2/
XPG endonuclease family.

In 1985, the identification of RuvC-like HJ cleavage
activity in eukaryotic cell extracts initiated a decades-long
hunt for the eukaryotic HJ resolvase activity (Elborough
and West 1990; Parsons and West 1988; Symington and
Kolodner 1985; Constantinou et al. 2001, 2002). The
RuvC-like activity in human cells was determined to be
dependent on the catalytic activity of the Rad2/XPF
endonuclease HsGEN1 (Ip et al. 2008). HsGENI1 was
isolated by column fractionation and identified by mass
spectroscopy as a 381-amino-acid C-terminal truncation.
Concurrent analysis in budding yeast used a TAP fusion library
to screen for nucleases capable of cleaving synthetic HIs,
identifying both Mus81 and the yeast GEN1 homolog Yenl.
Similar to the human HsGENI1 proteolytic fragment, Yenl
exhibited a symmetrical cleavage of synthetic HJs, although it
is not clear whether this activity is associated with the full-
length protein or a proteolytic fragment (Ip et al. 2008).

Recombinant HsGEN1(1-527), a fragment similar to the
originally identified truncation, readily cleaves 5’ flaps and
model replication fork structures (Rass et al. 2010).
Contrary to what was found with full-length DmGEN,
purified recombinant HsGEN1(1-527) exhibits activity on
synthetic HJs in vitro that is higher than on 5’ flaps or
model fork structures under single turnover conditions (Ip
et al. 2008; Rass et al. 2010). Purification and analysis of
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full-length HsGEN1 or the Drosophila fragment equivalent
to HsGEN1(1-527) have not been reported yet. Character-
istics of HsGEN1(1-527) activity on HJs emulated those of
the bacterial resolvase RuvC (Ip et al. 2008). Using 15-fold
excess protein, cleavage of migratable HJs occurred
symmetrically to produce religatable products (Ip et al.
2008). Additional studies found that the HsGEN1(1-527)
cleavage across the junction was one nucleotide to the 3’
side of the junction and exhibited an orientation bias similar
to RuvC (Rass et al. 2010). Hydrodynamic characterization
and in vivo coimmunoprecipitation results suggested that
the HsGEN1 fragment is a monomer in solution and
oligomerizes on DNA to conduct a coordinated cleavage
of four-way junctions (Rass et al. 2010). The observation
that only a proteolytic fragment, but not full-length human
GENI, cleaves Holliday junctions is rather puzzling. It has
been suggested that post-translational modification may be
responsible to unmask the HJ resolvase activity in GEN1
(Ip et al. 2008), but the nature of the modification and
mechanisms involved have not been determined yet.
Characterizing the biological function of GEN1/Yenl will
be critical to understanding the significance of their HJ
resolvase activity in vivo. Fission yeast S. pombe lacks a
Yenl/GEN1 homolog, precluding genetic analysis. However,
genetic experiments with yen/ null mutants in budding yeast
showed no effect on cell growth, viability, resistance to
genotoxic agents, intersister HR at tandem repeats, and
meiotic CO formation (Neil Hunter, personal communica-
tion) (Johnson et al. 1998; Blanco et al. 2010; Tay and Wu
2010; Ho et al. 2010). Similarly, siRNA knockdown of
GENI in HeLa cells exhibits little if any phenotype in
response to CPT, MMS, or UV treatment (Svendsen et al.
2009). Furthermore, a mutation in the Caenorhabditis
elegans homolog, gen-1, showed no embryonic lethality or
enhanced incidence of XO males, which are sensitive
readouts for meiotic chromosome pairing, meiotic HR, or
meiotic chromosome segregation defects in worms (Bailly et
al. 2010). Hence, YENI/GENI mutants in three different
organisms lack the phenotypes predicted for the major HJ
resolvase acting in HR based on the classic model for HJ
formation as a major recombination intermediate. Lastly, the
genetic analysis of gen-1 in C. elegans suggested a role of
GEN-1 in worm DNA damage signaling, as mutants in this
gene were isolated in a forward genetic screen for DNA
damage response signaling mutants using a complex and
indirect visual screen after IR exposure of L4 larvae (Bailly et
al. 2010). It is unclear whether GEN-1 is directly involved in
signaling or whether pathological DNA intermediates accu-
mulating in these mutants give rise to the observed
phenotype, similar to the spindle (spn) phenotype in D.
melanogaster mutants, which encode core components of HR
(spnd is Drosophila RADS51, spnB and spnD encode Rad51
paralogs) (Ghabrial et al. 1998; Staeva-Vieira et al. 2003).
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Given the complexity of structure-selective DNA endo-
nucleases with multiple enzymes potentially competing for
the same or similar substrates (see Table 1; Fig. 4), more
complex genetic analysis will be required to unravel the in
vivo function of Yenl/GENI1. In budding yeast, a yenl
mutation enhances the phenotype of mus8/ mutant cells for
sensitivity to MMS, UV, CPT, or phleomycin (Blanco et al.
2010; Tay and Wu 2010; Ho et al. 2010). Curiously, IR
sensitivity even in the mus8/ yenl double mutant is
minimal and only apparent at very high doses of radiation,
even though IR-induced DSBs are repaired almost exclu-
sively by HR in yeast (Blanco et al. 2010; Ho et al. 2010).
A thorough study of the outcomes (CO, NCO, BIR) of DSB
repair in budding yeast mus8! yenl single and double
mutants exposes a complex system where Mus81 contrib-
utes significantly to CO formation after DSB-initiated HR
in mitotic cells (Ho et al. 2010). While the yenl single
mutant had no effect, in a mus81-deficient strain the loss of
yenl essentially eliminated COs (Ho et al. 2010). Interest-
ingly, in the mus8! yenl double mutants, events were
channeled to BIR, not NCO, without loss of viability (Ho et
al. 2010). An analysis of in vivo HJ resolution by Mus81
and Yenl using a plasmid-based HJ structure transformed
into S. cerevisiae showed a reduction of substrate cleavage
in the mus81 yenl double mutant, while the single mutants
had no apparent effect on cleavage (Tay and Wu 2010). The
residual HJ resolution in the mus8! yenl double mutant
(~50%) was found to be independent of Radl and Slx1
(Tay and Wu 2010). A proportion of cleavage events were
attributed to the cleavage of substrates containing two or
more nicks, and it is unclear whether the transformed
plasmid-based substrate accurately mimics an intact HJ
substrate. Since double HJs are considered a key interme-
diate in meiotic HR, it is also important to extend the
characterization of these mutants to meiosis.

An enhanced phenotype in the double mutants compared
to the compound single mutants is often interpreted as
“redundant activities”. However, from evolutionary consid-
erations, completely “redundant” functions are unlikely to
exist due to lack of selective pressure i.e., each individual
enzyme must have a unique function that provides a
selective advantage. Moreover, it is unclear whether the
two enzymes, here Yenl and Mus81-Mms4, truly compete
for the same substrate or whether Yenl cleaves pathological
structures that accumulate in mus8/ mutants due to
processing of the original Mus81-Mms4 substrate. For
example, a nicked HJ may be the in vivo substrate for
Mus81-Mms4, but in the mus81 mutant such a substrate
may be ligated and become a substrate for Yenl. The
uncertainty about the in vivo substrate of the Mus81—
Mms4/EME1 endonuclease further complicates any inter-
pretation about potential Yenl in vivo substrates. In
particular, it is worth pointing out that the relevant structure
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for HR in the current model is the dHJ (Fig. 1), but no
published data are available for this substrate with RuvC,
Mus81-Mms4, or Yenl/GENI.

The subtle nature of the phenotypes of the yenl/genl
mutations brings up a very interesting question. If HJs are
the dominating recombination structure, then why is the
phenotype of the only eukaryotic enzyme, Yenl, with
characteristics of the RuvC resolvase so inconspicuous?
The fact that yenl/genl defects cause such a subtle
phenotype and are completely absent in S. pombe suggests
that intact HJs may not be the main recombination
intermediate in eukaryotes.

SIx1-SIx4: URI-YIG family endonucleases

SIx1 and SIx4 were identified in S. cerevisiae by a
productive genetic screen for synthetic lethal mutations
with a defect in the Sgsl helicase (Mullen et al. 2001).
Sequence alignment reveals Slx1 to have a conserved
UvrC-intron (URI)-endonuclease domain and a C-terminal
RING/PHD-type zinc finger domain (Fig. 3) (Fricke and
Brill 2003). These characteristics place Slx1 into the URI-
YIG family of endonucleases including E. coli UvrC
(Dunin-Horkawicz et al. 2006). A genetic analysis of S.
cerevisiae slx1 and slx4 deletion phenotypes identifies these
genes to function in the recombination-mediated repair of
stalled replication forks (Fricke and Brill 2003; Deng et al.
2005). A biochemical analysis of the SIx1-SIx4 complex
demonstrated the cleavage of a variety of DNA junctions in
vitro, with preference for Y-splayed, 5’ flaps, and model
replication forks (Fricke and Brill 2003). The incision
mapping of 5’ flap and model replication forks places
phosphodiester cleavage 3’ of the nonhomologous region
and adjacent to the branch point, generating ligatable
products (Fricke and Brill 2003). Budding yeast Slx1—
S1x4 was also tested on HJ substrate, showing some activity
towards mobile HJs and very low activity towards fixed
HJs. The HJ cleavage was asymmetric across all four arms
and the products were not compatible with direct ligation,
leading the authors to conclude that HJs are not a
physiologically relevant substrate for Slx1-SIx4 (Fricke
and Brill 2003).

Interestingly, the very same synthetic lethal screen with
sgsl also identified Mus81 and Mms4 (Mullen et al. 2001).
One of the key arguments to place the Mus81-Mms4
endonuclease in the HR pathway resolving recombination-
mediated DNA joint molecules is the suppression of the
synthetic lethality of mus81 (or mms4) mutants with an
sgs! mutation by an HR defect caused by a mutation in
RADS1, RAD52, RADS54, RADSS5, or RADS57 (Bastin-
Shanower et al. 2003; Fabre et al. 2002). This result
strongly suggests that HR generates substrates that require

processing either by Mus81-Mms4 or the Sgsl-Top3—
Rmil complex. Importantly, the synthetic lethality between
slx1 or slx4 with sgs/ is not suppressed by an HR defect in
budding yeast (Fricke and Brill 2003). This indicates that
the synthetic lethality of six/ (or s/x4) with sgs/ is not
caused by toxic recombination intermediates. Integrating
the in vitro substrate specificity with the genetic data, the
Brill laboratory proposed a cogent model for the function of
SIx1-Slx4 in replication termination, when two converging
replication forks stall (Fricke and Brill 2003). In fact, a
specific defect in the replication of the rDNA repeat was
uncovered in sgs/” slx4 double mutants after a shift to the
restrictive temperature (Kaliraman and Brill 2002). The
same conclusion was reached in independent studies of the
fission yeast Slx1-Slx4 complex (Coulon et al. 2004,
2006). Therefore, genetic and biochemical analyses do not
support a role of the SIx1-SIx4 complex in Rad51-
mediated recombination in yeasts.

Mutations in SLX4 display significantly enhanced and
novel phenotypes compared to defects in its partner SLX1
(Deng et al. 2005; Fricke and Brill 2003; Flott et al. 2007).
Slx4 binds Radl in a manner that is mutually exclusive
with SIx1 and stimulates the 5’ flap endonuclease activity of
Rad1-Radl10 to facilitate the cleavage of nonhomologous
tails during SSA (Fig. 1; Table 1) (Toh et al. 2010; Flott et
al. 2007). The nature of this interaction is specific to SSA
and has no involvement in the Slx4-dependent recovery of
stalled replication forks after MMS damage (Flott and
Rouse 2005; Li et al. 2008) (recently reviewed in Lyndaker
and Alani (2009)). Analyses of human and Drosophila Slx4
homologs, BTBD12 and MUS312, respectively, have
revealed the conservation of this interaction in other
eukaryotes (Table 1) (Andersen et al. 2009; Fekairi et al.
2009; Munoz et al. 2009; Svendsen et al. 2009; Toh et al.
2010). Budding yeast Slx4 also binds the BRCT-containing
protein, Rtt107, and is responsible for Mecl-dependent
Rtt107 phosphorylation in response to alkylation damage
(Roberts et al. 2006).

Regulation of SIx4 by posttranslational modification
may facilitate these context-specific protein interactions.
Six4 is the target of DNA damage-induced phosphorylation
by the Mecl/Tell kinases in response to IR, MMS, CPT,
HU, and 4-nitroquinoline oxide (Flott and Rouse 2005).
Mutation of seven putative Mecl phosphorylation sites on
Slx4 abolishes its interaction with Dpb11 causing sensitivity
to replication stress induced by the alkylating agent
MMS but not HU or CPT (Ohouo et al. 2010). This
suggests that, upon MMS-induced replication stress, Mecl
phosphorylation induces the assembly of a complex
between Dpbll, the SIx4-Slx1 nuclease complex, and
the Slx4-associated scaffold protein Rtt107, which perform
yet-to-be-determined functions in replication fork recovery
(Ohouo et al. 2010).
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Significant progress was made by the discoveries of the
mammalian, worm, and Drosophila Slx4 homologs,
BTBDI12, HIM-18, and MUS312, respectively, which share
with SIx4 a conserved C-terminal region (SAP or pseudo-
SAP domain in Fig. 3) that may act as a DNA docking site
used for substrate specificity (Andersen et al. 2009; Fekairi
et al. 2009; Munoz et al. 2009; Svendsen et al. 2009; Saito
et al. 2009). Mammalian BTBD12 and C. elegans HIM-18
share a conserved coiled—coil domain, as well as a Broad-
complex, Tramtrack, Bric-a-brac (BTB) domain that has
been speculated to mediate protein interactions (Fig. 3)
(Stogios et al. 2005). As seen in budding yeast, mammalian
and Drosophila SLX4 was observed to bind multiple
endonuclease partners by coimmunoprecipitation and pro-
teomic approaches using ectopically expressed proteins
(Fekairi et al. 2009; Munoz et al. 2009; Svendsen et al.
2009) (Table 1). Some of these partners were homologous
to known budding yeast Slx4-associating proteins including
yeast SIx1 and Radl, corresponding to XPF and MEI-9 in
human and Drosophila, respectively (Svendsen et al. 2009).
Several novel Slx4 interactions not previously found in
yeast were also observed, including MUS81, mismatch
repair proteins, and telomere-associated proteins (Svendsen
et al. 2009).

Mammalian BTBD12 (SLX4) complexes were reported
to cleave a variety of DNA junction substrates including 5’
flaps and model replication forks, similar to the budding
yeast enzyme (Fig. 4) (Fekairi et al. 2009; Munoz et al.
2009; Svendsen et al. 2009; Fricke and Brill 2003).
Immunoprecipitated BTBD12 complexes were also
reported to cleave HJs, similar to the low level of HJ
cleavage observed with budding yeast Slx1-SIx4 (Fekairi et
al. 2009; Munoz et al. 2009; Svendsen et al. 2009; Fricke
and Brill 2003). Several HJ substrates were analyzed for
cleavage and incision mapping, showing that BTBD12 and
associating proteins have divergent incision patterns, and
only 25% of resolved products are religatable (Fekairi et al.
2009; Munoz et al. 2009; Svendsen et al. 2009). These
enzymatic characteristics are similar to what was observed
in yeast and are inconsistent with the RuvC paradigm of
symmetrical cleavage and robust catalytic HJ cleavage
activity. The biochemical analysis of the mammalian
BTBDI12 complexes and associated endonuclease activities
(Fekairi et al. 2009; Munoz et al. 2009; Svendsen et al.
2009) is still rather incomplete and hampered by the
unavailability of catalytically active enzyme preparations,
requiring the addition of excess protein over substrate and
making potential contaminations a pertinent issue. In
addition, the effect of different cations (Mn"" versus Mg'")
on catalytic efficiency or substrate selectivity has not been
fully evaluated, but significant differences in cleavage
efficiency have been noted (Fekairi et al. 2009). Moreover,
the biochemical analysis of immunoprecipitated BTBD12 is
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complicated by its association with three different nuclease
subunits, SLX1, XPF, and MUSS81. It is presently unclear
whether these interactions all occur simultaneously or are
mutually exclusive. Hence, it is difficult to assess the
significance of the reported cleavage of HJs by mammalian
BTBDI12-containing complexes.

The identification of Drosophila MUS312 as a Slx4
homolog is of particular importance as this gene is
genetically well characterized and required for 90-95% of
meiotic COs in flies (Fig. 5) (Yildiz et al. 2002; Green
1981). MUS312 functions together with MEI-9 (XPF) in
meiotic CO formation but has no role in the NER function
of MEI-9. Moreover, it appears that MUS312 has a more
crucial function and acts independently of MEI-9 in
interstrand crosslink repair. Similar to the situation in yeast,
a defect in MUS312 is synthetically lethal with a mutation
in MUS309, encoding the fly BLM helicase (budding yeast
Sgsl), as is a defect in the fly MUS8! homolog (Trowbridge
et al. 2007; Andersen et al. 2009). Importantly, and again in
congruence with genetic findings in yeast, the synthetic
lethality of mus81 mus309 double mutant is suppressed by
an HR defect caused by a spnd mutation affecting the fly
Rad51 homolog, while the synthetic lethality of the mus312
mus309 double mutant is not suppressed by spnd (Trowbridge
et al. 2007; Andersen et al. 2009). This suggests that, like in
yeast, the synthetic lethality between mus312 (slx4) and
mus309 (BLM/sgsl) is not caused by toxic recombination
intermediates.

Metazoan SLX4 not only acts during meiosis but also in
somatic cells where it contributes to interstrand crosslink
repair and general recombination-mediated repair. Knock-
down of human BTBD12 or SLX1 causes a sensitivity to
interstrand crosslinking agents in HeLa (Andersen et al.
2009; Svendsen et al. 2009; Fekairi et al. 2009), HEK293
(Munoz et al. 2009), and U20S cells (Andersen et al.
2009), supporting a role of this protein in interstrand
crosslink repair, consistent with its initial discovery and
subsequent analysis in flies (Andersen et al. 2009; Yildiz et
al. 2002; Green 1981). The reduced expression of BTBD12
and SLX1 also reduced DSB-initiated recombination in a
GFP reporter assay in U20S cells (Munoz et al. 2009). It is
unclear whether this reduction could be a reflection of a cell
proliferation defect that was observed when the expression
of these genes was knocked down HeLa cells (Andersen et
al. 2009). Contrary to what would be expected from a
general HR defect, U20S cells depleted for BTBD12 or
SLX1 are not sensitive to IR (Svendsen et al. 2009).
However, BTBD12 and SLX1 knockdown in HEK293 cells
does cause IR sensitivity (Munoz et al. 2009). These
disparate results may be the result of using different cell
lines or different degrees of knockdown and suggest that
caution is required before concluding that BTBD12-SLX1
is involved in HR in somatic human cells.
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In conclusion, the in vivo function of SIx1-SIx4 shows
considerable plasticity between species and context-specific
situations. In flies, MUS3/2 controls the majority of
meiotic COs; in budding and fission yeast, however, six4
or sixI mutants do not affect spore viability, strongly
suggesting that meiotic HR does not require Slx1-SIx4.
Knockdown studies in flies and mammals show a role of
SLX4 in interstrand crosslink repair, a process that involves
HR. However, the synthetic lethality observed between
SIx4 and the Sgs1 helicase is not rescued by an HR defect
in either budding yeast or Drosophila, which suggests that
the related functions between Slx4 and the Sgsl complex
occur independently of recombination-mediated joint mol-
ecule resolution but possibly in replication termination. It
will be of great interest to characterize the Drosophila
meiotic MUS312-containing nuclease complexes and
reconstitute the different human BTBDI2 complexes in
vitro.

A unified model for all eukaryotes appears unlikely

The complexity of DNA structure-selective endonucleases
involved in DNA repair, replication, and recombination is
surprising, suggesting that the various enzymes address
different junction types or similar junctions occurring in
different compartments (nucleus, nucleolus, mitochondria?)
during different times during the cell cycle or in the
different functional contexts of DNA replication, DNA
repair, or meiotic recombination. For example, it is
perplexing that fission and budding yeast mutants in the
Mus81-Mms4/Emel complex are not more sensitive to
DSBs in somatic cells but show defects in meiotic
recombination (in fission yeast, an essentially absolute
defect), a DSB-initiated HR event. It could be argued that
somatic DSB repair proceeds always via SDSA, a pathway
in which Mus81-Mms4/Emel may not play a role, while
meiotic DSB repair involves dHJs. However, recently, dHJs
were discovered as intermediates in DSB repair in
vegetatively growing (somatic) budding yeast cells (Bzymek
etal. 2010) and provide evidence against this line of thought.
In addition, the present analysis documents significant
plasticity between the specific functions of individual
nucleases in different organisms. The prime example is
XPF, which plays no role in meiotic CO formation in
budding or fission yeast, but is essential for this process in
flies. These documented differences prevent the proposal of
an all-encompassing model on the specific functions of these
enzymes that would hold true for all eukaryotes. Further-
more, the overlapping substrate specificity of the nucleases
as determined by biochemical experiments does not allow
unambiguous assignment and requires substrate targeting or
compartmentalization in vivo. Lastly, despite the power of

yeast genetics, the interpretation of double or multiple
mutant data is difficult as every mutant creates a
pathological state and a function of a protein under these
conditions may not necessarily reflect such a function in
wild-type cells.

Single Holliday and double Holliday junctions:
rethinking the paradigm

Ever since the original model by Robin Holliday, the
identification of a nuclease capable of symmetric cleavage
of HJs to result in CO and NCO products has become a
holy grail in the HR field. Bacterial RuvC served as a guide
for a search of the equivalent enzyme in eukaryotes.
However, the absence of a clear phenotype for mutants in
Yenl/GENI1 as well as the abundance of DNA junction-
selective nucleases cause significant hesitation to accept the
traditional HJ-based model using the RuvC paradigm
(Figs. 1 and 2). Currently, the paradigm describes sHJs
and dHJs as containing four uninterrupted strands and
acting as the major recombination intermediate to direct CO
and NCO products (Fig. 1). This expectation is model-
driven, and evidence for the presence of intact HJs and
dHJs does not exclude the possibility of nicked substrates.

Seminal experiments in the Kleckner laboratory estab-
lished dHJs as key intermediates for meiotic CO formation
(Schwacha and Kleckner 1994, 1995, 1997). Psoralen-
crosslinked DNA from meiotic time courses was analyzed
by 2D gel electrophoresis and demonstrated the existence
of dHJs. Component strand analysis of dHJs by denaturing
gel electrophoresis identified full-length, uninterrupted
strands in the predicted non-recombinant configuration.
While this analysis demonstrated the presence of four
uninterrupted strands in the population of dHJs analyzed, it
does not demonstrate that every dHJ contains four
interrupted strands. Figure 6a illustrates how a population
of dHJs, where each individual dHJ has two nicks, can
provide an evidence for the existence of four uninterrupted
strands in the molecular analysis of the entire dHJ
population. dHJs have also been identified as an interme-
diate in somatic DSB repair in budding yeast (Bzymek et
al. 2010), and similar caveats apply there. Analogous
arguments can be made for sHJs, which were postulated
to be CO intermediates in fission yeast (Cromie et al.
20006).

Maybe the paradigm that HJs, single or double, comprise
four uninterrupted strands is too narrow? For Mus81—
Mms4/Emel and Yenl, there is sufficient biochemical and
genetic data to start speculating on a solution on the
following conundrums. Problem #1: the only eukaryotic
nuclear protein (in fact, a proteolytic fragment) that cleaves
HJs with RuvC-like specificity and symmetry has no
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Fig. 6 Crossover formation by cleavage of nicked junctions. a Four
types of displacement loops are predicted from single-end invasion
events initiated by either the left or right DSB ends of the maternal or
paternal homolog. Yellow boxes designate the single-end invasion
intermediates and circles indicate the two 5’ ends available to direct
subsequent cleavage. The location of the 5’ end will be largely
affected by the rate of end resection. From these initial invasion
events, second-end capture forms a mixed population of nicked double
HJs. The resulting strand compositions of the products are shown.

apparent function as a single mutant in HR in budding yeast
and mammalian cells and is entirely lacking in fission
yeast. Problem #2: Mus81-Mms4/Emel control most, if
not all, meiotic COs in fission yeast and a significant
fraction of COs in budding yeast, yet these enzymes display
little and, in some studies, no activity towards intact HJs in
vitro but readily cleave nicked junctions in all instances
studied. Moreover, the analysis of recombination junctions
in budding yeast mms4 cells demonstrated a decrease in the
levels of dHJs and single-end invasions (de los Santos et al.
2003). This suggests that Mus81-Mms4 is not involved in
processing these intermediates in S. cerevisiae and implies
that the crosslinking procedure that discovered dHJs and
single-end invasions is unable to identify the Mus81-Mms4
in vivo substrates. In fission yeast, HJs accumulate in
mus81 mutants (Cromie et al. 2006; Gaillard et al. 2003),
but it is unclear (1) whether HJs are the substrate for Mus81
or a precursor joint molecule, such as a D-loop, and (2) if
these HJs contain a nick or consist of four uninterrupted
strands.

How can the processing of nicked junctions lead to
COs? Figure 1 indicates a number of DNA junction
molecules that may occur during HR, and Fig. 6b illustrates
a potential pathway where the sequential cleavage of nicked
junctions leads to CO formation based on previous
proposals (Heyer et al. 2003; Osman et al. 2003; Whitby
2005). Importantly, this sequence of junction processing
always leads to a CO outcome. A genetic analysis led
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Note that in the population each full-length component strand is
represented. b Model for crossover formation via concomitant or
sequential cleavage of nicked joint molecules. Repair of meiotic DSBs
undergo end-processing, single-end invasion, and second-end capture
to form joint molecules comprised of two nicked Holliday junctions.
Cleavage of both nicked HJs by a structure-selective endonuclease
(vellow triangles) results in only crossovers due to the directionality
imposed by the available nicks

Cromie and Leach (2000) to propose that nicks could
provide the asymmetry required for the differential loading
of the endonuclease and contribute to a bias of CO or NCO
products depending on its orientation. A related proposal on
nick-instructed resolution has been made before (Gilbertson
and Stahl 1996), and a recent model (Stahl and Foss 2010)
posits that the position of a nick directs the mismatch repair
machinery to heteroduplex regions at meiotic DSB.
Mus81-Mms4/EME1 strongly prefers nicked junction
substrates over classic HJs, and cleavage of nicked substrates
would also provide a rationale for the recombination-
dependent lethality of the mus81 sgs! double mutant.
Absence of Mus81-Mms4 activity may lead to the ligation
of these nicked junctions, generating a different substrate in
mus81 (or mms4) mutants. Nicked dHJs formed during
replication fork support, DSB, or gap repair may thus
become intact dHJs with four uninterrupted strands, a
substrate for dissolution by the Sgs1-Top3—Rmi3 complex.
Likewise, the absence of Mus81 could allow for nicked joint
molecules to progress into intact HJs, where the function of
nucleases capable of cleaving this substrate such as Yenl
may become critical. This scenario would explain why yen/
single mutants lack a phenotype and exacerbate the
phenotype of mus8! cells. Possibly, only the mus8/ mutant
condition, but not wild type, provides a substrate (HJ) that
can be targeted by a HJ resolvase. Likewise, Yenl and Sgsl—
Top3—Rmil may need to address sHJs and dHJs, respective-
ly, that arise as consequences of ligation in wild-type cells
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and are processed very late in the cell cycle leading to
anaphase bridges (Chan et al. 2007, 2009).

Conclusion and outlook

A significant progress over the recent years has produced
almost a surfeit in candidates for junction nucleases in
eukaryotic HR. Only Yenl/GENI displays the biochemical
hallmarks of the bacterial RuvC resolvase, whereas the XPF
family and the URI-YIG family nucleases appear to show
preference for nicked substrates as compared to the intact HJ.
There is an important mechanistic distinction between classical
Holliday junctions (single or double HJs) with four uninter-
rupted component strands and nicked junction resolution. An
appreciation of this difference rationalizes the need for multiple
endonucleases that target different junctions in varying cellular
contexts (replication, recombination, meiosis) and possibly in
different nuclear compartments. The sheer number of nicked-
junction nucleases and the absence of meiotic and mitotic
phenotypes in Yenl/GEN1 mutants highlight the importance
for processing nicked recombination intermediates.

Intriguingly, not all players have been analyzed yet, and
evidence for additional HJ endonucleases candidates is
available. Mlh3, part of the Mlh1-MIlh3 complex required
for meiotic CO formation in the Msh4-Msh5 pathway
(Fig. 5) (Hunter and Borts 1997; Wang et al. 1999; Argueso
et al. 2004), contains the same putative endonuclease motif
as that of human PMS2 and yeast Pmsl (Kadyrov et al.
2006, 2007; Nishant et al. 2008). Potential catalytically
defective mutants in the putative endonuclease domain of
Mih3 exhibit the same meiosis and CO defect of m/h3 null
mutants, opening the possibility that Mlh3 might be an
endonuclease active in the Msh4-MshS5 CO pathway
(Nishant et al. 2008). It will be of great interest to
understand the mechanism of CO formation in the Msh4—
Msh5 pathway. Moreover, the recent discovery of FANI, a
structure-selective endonuclease associated with the FANC
pathway of interstrand crosslink repair (Kratz et al. 2010;
Liu et al. 2010; MacKay et al. 2010; Smogorzewska et al.
2010), adds yet another candidate endonuclease to the mix.

The importance of DNA junction endonucleases in DNA
replication, DNA repair, and recombination is well estab-
lished. The plasticity in the use of individual related nucleases
in distinct functional contexts in various organisms provides
an interesting puzzle to solve. Given the progress made over
the last 10 years, the prospect of elucidating the individual
roles of these nucleases is good.

Acknowledgements We thank Neil Hunter and Lorraine Symington
for communicating unpublished results, Neil Hunter and Steve
Kowalczykowski for discussion, and Paul Russell, Jeff Sekelsky,
Steve Brill as well as members of the Heyer lab (Shannon Ceballos,
Kirk Ehmsen, Clare Fasching, Jie Liu, Damon Meyer, William

Wright, Xiao-Ping Zhang) for critical comments on the manuscript.
This work was supported by grants from the US National Institutes of
Health (GM58015, CA92276) and US Department of Defense
(W81XWH-09-1-0116). ES was supported by a fellowship from the
HHMI-IMBS training grant at UC Davis.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

Abdullah MF, Hoffmann ER, Cotton VE, Borts RH (2004) A role for
the MutL. homologue MLH2 in controlling heteroduplex formation
and in regulating between two different crossover pathways in
budding yeast. Cytogenet Genome Res 107(3—4):180-190

Aboussekhra A, Biggerstaff M, Shivji MKK, Vilpo JA, Moncollin V,
Podust VN, Protic M, Hiibscher U, Egli JM, Wood RD (1995)
Mammalian DNA nucleotide excision repair reconstituted with
purified protein components. Cell 80:859-868

Abraham J, Lemmers B, Hande MP, Moynahan ME, Chahwan C,
Ciccia A, Essers J, Hanada K, Chahwan R, Khaw AK,
McPherson P, Shehabeldin A, Laister R, Arrowsmith C, Kanaar
R, West SC, Jasin M, Hakem R (2003) EMEI is involved in
DNA damage processing and maintenance of genomic stability in
mammalian cells. EMBO J 22(22):6137-6147

Aguilera A (1995) Genetic evidence for different Rad52-dependent
intrachromosomal recombination pathways in Saccharomyces
cerevisiae. Curr Genet 27(4):298-305

Ahmad A, Robinson AR, Duensing A, van Drunen E, Beverloo HB,
Weisberg DB, Hasty P, Hoeijmakers JHJ, Niedernhofer LJ (2008)
ERCCI1-XPF endonuclease facilitates DNA double-strand break
repair. Mol Cell Biol 28(16):5082—-5092

Andersen SL, Bergstralh DT, Kohl KP, LaRocque JR, Moore CB,
Sekelsky J (2009) Drosophila MUS312 and the vertebrate ortholog
BTBDI2 interact with DNA structure-specific endonucleases in
DNA repair and recombination. Mol Cell 35(1):128-135

Argueso JL, Wanat J, Gemici Z, Alani E (2004) Competing crossover
pathways act during meiosis in Saccharomyces cerevisiae.
Genetics 168:1805-1816

Bailly AP, Freeman A, Hall J, Declais AC, Alpi A, Lilley DMJ,
Ahmed S, Gartner A (2010) The Caenorhabditis elegans
homolog of GEN1/Yenl resolvases links DNA damage signaling
to DNA double-strand break repair. PLoS Genet 6(7):e1001025

Bastin-Shanower SA, Fricke WM, Mullen JR, Brill SJ (2003) The
mechanism of Mus81-Mms4 cleavage site selection distinguishes it
from the homologous endonuclease Rad1-Rad10. Mol Cell Biol
23:3487-3496

Bennett RJ, Dunderdale HJ, West SC (1993) Resolution of Holliday
junctions by RuvC resolvase—cleavage specificity and DNA
distortion. Cell 74(6):1021-1031

Benson FE, West SC (1994) Substrate specificity of the Escherichia
coli RuvC protein—resolution of three- and four-stranded
recombination intermediates. J Biol Chem 269:5195-5201

Berchowitz LE, Francis KE, Bey AL, Copenhaver GP (2007) The role
of AMUSS8I in interference-insensitive crossovers in A. thaliana.
PLoS Genet 3(8):e132

Biggerstaff M, Szymkowski DE, Wood RD (1993) Co-correction of
the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA
repair defects in vitro. EMBO J 12(9):3685-3692

Birkenkamp K, Kemper B (1995) In vitro processing of heteroduplex
loops and mismatches by endonuclease VII. DNA Res 2(1):9-14

@ Springer



124

Chromosoma (2011) 120:109-127

Blanco MG, Matos J, Rass U, Ip SCY, West SC (2010) Functional
overlap between the structure-specific nucleases Yenl and
Mus81-Mms4 for DNA-damage repair in S. cerevisiae. DNA
Repair 9(4):394-402

Boddy MN, Lopez-Girona A, Shanahan P, Interthal H, Heyer WD,
Russell P (2000) Damage tolerance protein Mus81 associates
with the FHA1 domain of checkpoint kinase Cds1. Mol Cell Biol
20:8758-8766

Boddy MN, Gaillard P-HL, McDonald WH, Shanahan P, Yates JR,
Russell P (2001) Mus81-Emel are essential components of a
Holliday junction resolvase. Cell 107:537-548

Bzymek M, Thayer NH, Oh SD, Kleckner N, Hunter N (2010) Double
Holliday junctions are intermediates of DNA break repair. Nature
464(7290):937-941

Carpenter ATC, Sandler L (1974) On recombination-defective meiotic
mutants in Drosophila melanogaster. Genetics 76:453—475

Carr AM, Schmidt H, Kirchhoff S, Muriel WJ, Sheldrick KS, Griffiths
DJ, Basmacioglu CN, Subramani S, Clegg M, Nasim A et al
(1994) The RADI6 gene of Schizosaccharomyces pombe: a
homolog of the RADI gene of Saccharomyces cerevisiae. Mol
Cell Biol 14(3):2029-2040

Cejka P, Plank JL, Bachrati CZ, Hickson ID, Kowalczykowski SC (2010)
Rmil stimulates decatenation of double Holliday junctions during
dissolution by Sgs1-Top3. Nat Struct Mol Biol 17:1377-1382

Chan KL, North PS, Hickson ID (2007) BLM is required for faithful
chromosome segregation and its localization defines a class of
ultrafine anaphase bridges. EMBO J 26(14):3397-3409

Chan KL, Palmai-Pallag T, Ying SM, Hickson ID (2009) Replication
stress induces sister-chromatid bridging at fragile site loci in
mitosis. Nat Cell Biol 11(6):753-760

Chang JH, Kim JJ, Choi JM, Lee JH, Cho YJ (2008) Crystal structure
of the MUS81-EME1 complex. Genes Dev 22(8):1093—-1106

Chen X-B, Melchionna R, Denis C-M, Gaillard P-HL, Blasina A, Van
de Weyer I, Boddy MN, Russell P, Vialard J, McGowan CH
(2001) Human MUS81-associated endonuclease cleaves Holliday
junctions in vitro. Mol Cell 8:1117-1127

Ciccia A, Constantinou A, West SC (2003) Identification and
characterization of the human MUS81/EME1 endonuclease. J
Biol Chem 278:25172-25178

Ciccia A, McDonald N, West SC (2008) Structural and functional
relationships of the XPF/MUS81 family of proteins. Annu Rev
Biochem 77:259-287

Connolly B, Parsons CA, Benson FE, Dunderdale HJ, Sharples GIJ,
Lloyd RG, West SC (1991) Resolution of Holliday junctions in
vitro requires the Escherichia coli ruvC gene product. Proc Natl
Acad Sci USA 88(14):6063-6067

Constantinou A, Davies AA, West SC (2001) Branch migration and
Holliday junction resolution catalyzed by activities from mammalian
cells. Cell 104(2):259-268

Constantinou A, Chen XB, McGowan CH, West SC (2002) Holliday
junction resolution in human cells: two junction endonucleases
with distinct substrate specificities. EMBO J 21(20):5577-5585

Cote AG, Lewis SM (2008) Mus81-dependent double-strand DNA
breaks at in vivo-generated cruciform structures in S. cerevisiae.
Mol Cell 31(6):800-812

Coulon S, Gaillard PHL, Chahwan C, McDonald WH, Yates JR,
Russell P (2004) Slx1-SIx4 are subunits of a structure-specific
endonuclease that maintains ribosomal DNA in fission yeast.
Mol Biol Cell 15(1):71-80

Coulon S, Noguchi E, Noguchi C, Du LL, Nakamura TM, Russell P
(2006) Rad22(Rad52)-dependent repair of ribosomal DNA
repeats cleaved by Slx1-Slx4 endonuclease. Mol Biol Cell 17
(4):2081-2090

Cox BS, Parry JM (1968) The isolation, genetics and survival
characteristics of ultraviolet light-sensitive mutants in yeast.
Mutat Res 6(1):37-55

@ Springer

Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith
GR (2006) Single Holliday junctions are intermediates of meiotic
recombination. Cell 127(6):1167-1178

Cromie GA, Leach DR (2000) Control of crossing over. Mol. Cell 6
(4):815-826

Davies AA, Friedberg EC, Tomkinson AE, Wood RD, West SC
(1995) Role of the Radl and Radl0 proteins in nucleotide
excision repair and recombination. J Biol Chem 270(42):24638—
24641

de los Santos T, Loidl J, Larkin B, Hollingsworth N (2001) A role for
MMS4 in the processing of recombination intermediates during
meiosis in Saccharomyces cerevisiae. Genetics 159:1511-1525

de los Santos T, Hunter N, Lee C, Larkin B, Loidl J, Hollingsworth
NM (2003) The Mus81/Mms4 endonuclease acts independently
of double-Holliday junction resolution to promote a distinct
subset of crossovers during meiosis in budding yeast. Genetics
164:81-94

Dendouga N, Gao H, Moechars D, Janicot M, Vialard J, McGowan
CH (2005) Disruption of murine MUSS8! increases genomic
instability and DNA damage sensitivity but does not promote
tumorigenesis. Mol Cell Biol 25(17):7569-7579

Deng CC, Brown JA, You DQ, Brown JM (2005) Multiple
endonucleases function to repair covalent topoisomerase I
complexes in Saccharomyces cerevisiae. Genetics 170(2):591—
600

Dickie P, McFadden G, Morgan AR (1987) The site-specific cleavage
of synthetic Holliday junction analogs and related branched DNA
structures by bacteriophage T7 endonuclease 1. J Biol Chem 262
(30):14826-14836

Doe CL, Ahn JS, Dixon J, Whitby MC (2002) Mus81-Emel and
Rqhl involvement in processing stalled and collapsed replication
forks. J Biol Chem 277:32753-32759

Dowling EL, Maloney DH, Fogel S (1985) Meiotic recombination and
sporulation in repair-deficient strains of yeast. Genetics 109
(2):283-302

Dubest S, Gallego ME, White CI (2002) Role of the ArRadlp
endonuclease in homologous recombination in plants. EMBO
Rep 3(11):1049-1054

Dunin-Horkawicz S, Feder M, Bujnicki JM (2006) Phylogenomic
analysis of the GIY-YIG nuclease superfamily. BMC Genomics
7:98

Edelmann W, Cohen PE, Kneitz B, Winand N, Lia M, Heyer J,
Kolodner R, Pollard JW, Kucherlapati R (1999) Mammalian
MutS homologue 5 is required for chromosome pairing in
meiosis. Nat Genet 21(1):123-127

Ehmsen KT, Heyer WD (2008) Saccharomyces cerevisiae Mus81—
Mms4 is a catalytic structure-selective endonuclease. Nucleic
Acids Res 36:2182-2195

Ehmsen KT, Heyer WD (2009) A junction branch point adjacent to a
DNA backbone nick directs substrate cleavage by Saccharomyces
cerevisiae Mus81-Mms4. Nucleic Acids Res 37(6):2026-2036

Elborough KM, West SC (1990) Resolution of synthetic Holliday
junctions in DNA by an endonuclease activity from calf thymus.
EMBO J 9(9):2931-2936

Fabre F, Chan A, Heyer WD, Gangloff S (2002) Alternate pathways
involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation
of toxic recombination intermediates from single-stranded gaps
created by DNA replication. Proc Natl Acad Sci USA 99:16887—
16892

Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S,
Dong MQ, Ruse C, Yates JR, Russell P, Fuchs RP, McGowan
CH, Gaillard PHL (2009) Human SLX4 is a Holliday junction
resolvase subunit that binds multiple DNA repair/recombination
endonucleases. Cell 138(1):78-89

Fishman Lobell J, Haber JE (1992) Removal of nonhomologous
DNA ends in double-strand break recombination—the role of



Chromosoma (2011) 120:109-127

125

the yeast ultraviolet repair gene RADI. Science 258(5081):480—
484

Flott S, Rouse J (2005) Slx4 becomes phosphorylated after DNA
damage in a Mecl/Tell-dependent manner and is required for
repair of DNA alkylation damage. Biochem J 391(Pt 2):325—
333

Flott S, Alabert C, Toh GW, Toth R, Sugawara N, Campbell DG,
Haber JE, Pasero P, Rouse J (2007) Phosphorylation of Slx4 by
Mecl and Tell regulates the single-strand annealing mode of
DNA repair in budding yeast. Mol Cell Biol 27(18):6433—6445

Fricke WM, Brill SJ (2003) SIx1-SlIx4 is a second structure-specific
endonuclease functionally redundant with Sgsl-Top3. Genes
Dev 17(14):1768-1778

Fricke WM, Bastin-Shanower SA, Brill SJ (2005) Substrate specificity
of the Saccharomyces cerevisiae Mus81-Mms4 endonuclease.
DNA Repair 4(2):243-251

Froget B, Blaisonneau J, Lambert S, Baldacci G (2008) Cleavage of
stalled forks by fission yeast Mus81/Emel in absence of DNA
replication checkpoint. Mol Biol Cell 19(2):445-456

Furukawa T, Kimura S, Ishibashi T, Mori Y, Hashimoto J, Sakaguchi
K (2003) OsSEND-1: a new Rad2 nuclease family member in
higher plants. Plant Mol Biol 51(1):59-70

Gaillard P-H, Noguchi E, Shanahan P, Russell P (2003) The
endogenous Mus81-Emel complex resolves Holliday junctions
by a nick and counternick mechanism. Mol Cell 12:747-759

Gallego F, Fleck O, Li A, Wyrzykowska J, Tinland B (2000) AfRAD1,
a plant homologue of human and yeast nucleotide excision repair
endonucleases, is involved in dark repair of UV damages and
recombination. Plant J 21(6):507-518

Gaskell LJ, Osman F, Gilbert RJ, Whitby MC (2007) Mus81 cleavage
of Holliday junctions: a failsafe for processing meiotic recombination
intermediates? EMBO J 26(7):1891-1901

Ghabrial A, Ray RP, Schupbach T (1998) orka and spindle-b encode
components of the RAD52 DNA repair pathway and affect
meiosis and patterning in Drosophila oogenesis. Genes Dev 12
(17):2711-2723

Gilbertson LA, Stahl FW (1996) A test of the double-strand break
repair model for meiotic recombination in Saccharomyces
cerevisiae. Genetics 144(1):27-41

Green MM (1981) Mus(3)312d1, a mutagen sensitive mutant with
profound effects on female meiosis in Drosophila melanogaster.
Chromosoma 82:259-266

Guzder SN, Habraken Y, Sung P, Prakash L, Prakash S (1995)
Reconstitution of yeast nucleotide excision repair with purified
Rad proteins, replication protein A, and transcription factor
TFIIH. J Biol Chem 270(22):12973-12976

Haber JE (2008) Evolution of models of homologous recombination.
In: Egel R, Lankenau D-H (eds) Genome dynamics and stability
3: recombination and meiosis. Models, means, and evolution.
Springer, Heidelberg, pp 1-64

Habraken Y, Sung P, Prakash L, Prakash S (1994) Holliday junction
cleavage by yeast Radl protein. Nature 371(6497):531-534

Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H,
Beverloo HB, Maas A, Essers J, Hickson ID, Kanaar R (2007)
The structure-specific endonuclease Mus81 contributes to repli-
cation restart by generating double-strand DNA breaks. Nat
Struct Mol Biol 14(11):1096-1104

Hartung F, Suer S, Bergmann T, Puchta H (2006) The role of
AMUSS81 in DNA repair and its genetic interaction with the
helicase A/RECQ4A. Nucleic Acids Res 34(16):4438-4448

Heyer WD (2007) Biochemistry of eukaryotic homologous recombi-
nation. In: Aguilera A, Rothstein R (eds) Molecular genetics of
recombination. Springer, Heidelberg, pp 95-133

Heyer WD, Ehmsen KT, Solinger JA (2003) Holliday junctions in the
eukaryotic nucleus: resolution in sight? Trends Biochem Sci
10:548-557

Ho CK, Mazon G, Lam AF, Symington LS (2010) Mus81 and Yenl
promote reciprocal exchange during mitotic recombination to
maintain genome integrity in budding yeast. Molecular Cell (in press)

Holliday R (1964) A mechanism for gene conversion in fungi. Genet
Res 5:282-304

Hollingsworth NM, Brill SJ (2004) The Mus81 solution to resolution:
generating meiotic crossovers without Holliday junctions. Genes
Dev 18(2):117-125

Holloway JK, Booth J, Edelmann W, McGowan CH, Cohen PE
(2008) MUSS81 generates a subset of MLH1-MLH3-independent
crossovers in mammalian meiosis. PLoS Genet 4(9):¢1000186

Hunter N, Borts RH (1997) Mlhl is unique among mismatch repair
proteins in its ability to promote crossing-over during meiosis.
Genes Dev 11:1573-1582

Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric
intermediate at the double strand break to double Holliday
junction transition of meiotic recombination. Cell 106:59-70

Ii M, Brill SJ (2005) Roles of Sgs1, Mus81, and Rad51 in the repair of
lagging-strand replication defects in Saccharomyces cerevisiae.
Curr Genet 48(4):213-225

Interthal H, Heyer WD (2000) MUS81 encodes a novel helix—hairpin—
helix protein involved in the response to UV- and methylation-
induced DNA damage in Saccharomyces cerevisiae. Mol Gen
Genet 263:812-827

Ip SCY, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC (2008)
Identification of Holliday junction resolvases from humans and
yeast. Nature 456(7220):357-361

Ishikawa G, Kanai Y, Takata K, Takeuchi R, Shimanouchi K, Ruike T,
Furukawa T, Kimura S, Sakaguchi K (2004) DmGEN, a novel
RAD?2 family endo-exonuclease from Drosophila melanogaster.
Nucleic Acids Res 32(21):6251-6259

Ivanov EL, Haber JE (1995) RADI and RADI0, but not other
excision repair genes, are required for double-strand break-
induced recombination in Saccharomyces cerevisiae. Mol Cell
Biol 15(4):2245-2251

Iwasaki H, Takahagi M, Shiba T, Nakata A, Shinagawa H (1991)
Escherichia coli RuvC protein is an endonuclease that resolves
the Holliday structure. EMBO J 10(13):4381-4389

Jensch F, Kemper B (1986) Endonuclease VII resolves Y-junctions in
branched DNA in vitro. EMBO J 5(1):181-189

Jensch F, Kosak H, Seeman NC, Kemper B (1989) Cruciform cutting
endonucleases from Saccharomyces cerevisiae and phage T4
show conserved reactions with branched DNAs. EMBO J 8
(13):4325-4334

Johnson RE, Kovvali GK, Prakash L, Prakash S (1998) Role of yeast
Rthl nuclease and its homologs in mutation avoidance, DNA
repair, and DNA replication. Curr Genet 34(1):21-29

Johnson-Schlitz D, Engels WR (2006) Template disruptions and
failure of double Holliday junction dissolution during double-
strand break repair in Drosophila BLM mutants. Proc Natl Acad
Sci USA 103(45):16840-16845

Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonu-
cleolytic function of MutL alpha in human mismatch repair. Cell
126(2):297-308

Kadyrov FA, Holmes SF, Arana ME, Lukianova OA, O’Donnell M,
Kunkel TA, Modrich P (2007) Saccharomyces cerevisiae MutL
alpha is a mismatch repair endonuclease. J Biol Chem 282
(51):37181-37190

Kaliraman V, Brill SJ (2002) Role of Sgsl and Slx4 in maintaining
rDNA structure in Saccharomyces cerevisiae. Curr Genet 41
(6):389—-400

Kaliraman V, Mullen JR, Fricke WM, Bastin-Shanower BSJ (2001)
Functional overlap between Sgsl-Top3 and the Mms4—Mus81
endonuclease. Genes Dev 15:2730-2740

Kanai Y, Ishikawa G, Takeuchi R, Ruike T, R-i N, Thara A, Ohashi T,
K-i T, Kimura S, Sakaguchi K (2007) DmGEN shows a flap

@ Springer



126

Chromosoma (2011) 120:109-127

endonuclease activity, cleaving the blocked-flap structure and
model replication fork. FEBS J 274:3914-3927

Kearney HM, Kirkpatrick DT, Gerton JL, Petes TD (2001) Meiotic
recombination involving heterozygous large insertions in
Saccharomyces cerevisiae: formation and repair of large,
unpaired DNA loops. Genetics 158:1457-1476

Khazanehdari KA, Borts RH (2000) Exo1 and Msh4 differentially affect
crossing-over and segregation. Chromosoma 109(1-2):94-102

Kleff S, Kemper B, Sternglanz R (1992) Identification and character-
ization of yeast mutants and the gene for a cruciform cutting
endonuclease. EMBO J 11(2):699-704

Kobayashi I, Ikeda H (1983) Double Holliday structure: a possible in
vivo intermediate form of general recombination in Escherichia
coli. Mol Gen Genet 191(2):213-220

Koster DA, Palle K, Bot ES, Bjornsti MA, Dekker NH (2007)
Antitumour drugs impede DNA uncoiling by topoisomerase 1.
Nature 448(7150):213-217

Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C,
Cannavo E, Sartori AA, Hengartner MO, lJiricny J (2010)
Deficiency of FANCD2-associated nuclease KIAA1018/FAN1
sensitizes cells to interstrand crosslinking agents. Cell 142(1):77-88

Krogh BO, Symington LS (2004) Recombination proteins in yeast.
Annu Rev Genet 38:233-271

Lee K, Lee SE (2007) Saccharomyces cerevisiae Sae2- and Tell-
dependent single-strand DNA formation at DNA break promotes
microhomology-mediated end joining. Genetics 176(4):2003—
2014

Li X, Heyer WD (2008) Homologous recombination in DNA repair
and DNA damage tolerance. Cell Res 18:99-113

Li FY, Dong JC, Pan XW, Oum JH, Boeke JD, Lee SE (2008)
Microarray-based genetic screen defines SAWI, a gene required
for Radl/Rad10-dependent processing of recombination inter-
mediates. Mol Cell 30(3):325-335

Liefshitz B, Parket A, Maya R, Kupiec M (1995) The role of DNA
repair genes in recombination between repeated sequences in
yeast. Genetics 140(4):1199-1211

Liu T, Ghosal G, Yuan JS, Chen JJ, Huang J (2010) FAN1 acts with
FANCI-FANCD?2 to promote DNA interstrand cross-link repair.
Science 329(5992):693-696

Lyndaker AM, Alani E (2009) A tale of tails: insights into the coordination
of 3’ end processing during homologous recombination. Bioessays
31(3):315-321

Lyndaker AM, Goldfarb T, Alani E (2008) Mutants defective in
Rad1-Rad10-SIx4 exhibit a unique pattern of viability during
mating-type switching in Saccharomyces cerevisiae. Genetics
179(4):1807-1821

MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney
TJ, Hofmann K, Gartner A, West SC, Helleday T, Lilley DMJ,
Rouse J (2010) Identification of KIAA1018/FAN1, a DNA repair
nuclease recruited to DNA damage by monoubiquitinated
FANCD?2. Cell 142(1):65-76

Malkova A, Ivanov EL, Haber JE (1996) Double-strand break repair in
the absence of Rad51 in yeast: a possible role for break-induced
DNA replication. Proc Natl Acad Sci USA 93(14):7131-7136

Matulova P, Marini V, Burgess RC, Sisakova A, Kwon Y, Rothstein R,
Sung P, Krejci L (2009) Cooperativity of Mus81-Mms4 with
Rad54 in the resolution of recombination and replication
intermediates. J Biol Chem 284(12):7730-7742

Mazina OM, Mazin AV (2008) Human RADS54 protein stimulates
human MUS81-EMEI! endonuclease. Proc Natl Acad Sci USA
105(47):18249-18254

McDonald JP, Rothstein R (1994) Unrepaired heteroduplex DNA in
Saccharomyces cerevisiae is decreased in RADI RAD52-inde-
pendent recombination. Genetics 137(2):393—405

McPherson JP, Lemmers B, Chahwan R, Pamidi A, Migon E,
Matysiak-Zablocki E, Moynahan ME, Essers J, Hanada K,

@ Springer

Poonepalli A, Sanchez-Sweatman O, Khokha R, Kanaar R, Jasin
M, Hande MP, Hakem R (2004) Involvement of mammalian
MUSSI in genome integrity and tumor suppression. Science 304
(5678):1822-1826

Mimida N, Kitamoto H, Osakabe K, Nakashima M, Ito Y, Heyer WD,
Toki S, Ichikawa H (2007) Two alternatively spliced transcripts
generated from OsMUSS1, a rice homolog of yeast Mus81, are
up-regulated by DNA-damaging treatments. Plant Cell Physiol
48(4):648-654

Mizuuchi K, Kemper B, Hays J, Weisberg RA (1982) T4 endonuclease
VII cleaves Holliday structures. Cell 29(2):357-365

Mullen JR, Kaliraman V, Ibrahim SS, Brill SJ (2001) Requirement for
three novel protein complexes in the absence of the Sgs1 DNA
helicase in Saccharomyces cerevisiae. Genetics 157:103—118

Munoz IM, Hain K, Declais AC, Gardiner M, Toh GW, Sanchez-
Pulido L, Heuckmann JM, Toth R, Macartney T, Eppink B,
Kanaar R, Ponting CP, Lilley DMJ, Rouse J (2009) Coordination
of structure-specific nucleases by human SLX4/BTBDI2 is
required for DNA repair. Mol Cell 35(1):116-127

Murchie Al, Lilley DM (1993) T4 endonuclease VII cleaves DNA
containing a cisplatin adduct. J Mol Biol 233(1):77-85

Nishant KT, Plys AJ, Alani E (2008) A mutation in the putative Mlh3
endonuclease domain confers a defect in both mismatch repair
and meiosis in Saccharomyces cerevisiae. Genetics 179(2):747—
755

Oh SD, Lao JP, Taylor AF, Smith GR, Hunter N (2008) RecQ
helicase, Sgsl, and XPF family endonuclease, Mus§1-Mms4,
resolve aberrant joint molecules during meiotic recombination.
Mol Cell 31(3):324-336

Ohouo PY, de Oliveira FMB, Almeida BS, Smolka MB (2010) DNA
damage signaling recruits the Rtt107-SIx4 scaffolds via Dpbl1
to mediate replication stress response. Mol Cell 39(2):300-306

Osman F, Whitby MC (2007) Exploring the roles of Mus81-Emel/
Mms4 at perturbed replication forks. DNA Repair (Amst) 6
(7):1004-1017

Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers
by resolution of nicked Holliday junctions: a role for Mus81—
Emel in meiosis. Mol Cell 12(3):761-774

Paques F, Haber JE (1997) Two pathways for removal of nonhomol-
ogous DNA ends during double-strand break repair in Saccha-
romyces cerevisiae. Mol Cell Biol 17(11):6765-6771

Paques F, Haber JE (1999) Multiple pathways of recombination
induced by double-strand breaks in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev 63:349-404

Parsons CA, West SC (1988) Resolution of model Holliday junctions
by yeast endonuclease is dependent upon homologous DNA
sequences. Cell 52(4):621-629

Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and
beyond. Nat Rev Cancer 6(10):789—-802

Prado F, Aguilera A (1995) Role of reciprocal exchange, one-ended
invasion crossover and single-strand annealing on inverted and
direct repeat recombination in yeast: different requirements for
the RADI, RAD10, and RAD52 genes. Genetics 139(1):109—
123

Radford SJ, Goley E, Baxter K, McMahan S, Sekelsky J (2005)
Drosophila ERCCI1 is required for a subset of MEI-9-dependent
meiotic crossovers. Genetics 170(4):1737-1745

Radford SJ, McMahan S, Blanton HL, Sekelsky J (2007) Heteroduplex
DNA in meiotic recombination in Drosophila mei-9 mutants.
Genetics 176(1):63-72

Rass U, Compton SA, Matos J, Singleton MR, Ip SCY, Blanco MG,
Griffith JD, West SC (2010) Mechanism of Holliday junction
resolution by the human GENI1 protein. Genes Dev 24(14):1559—
1569

Resnick MA (1976) The repair of double-strand breaks in DNA: a
model involving recombination. J Theor Biol 59:97-106



Chromosoma (2011) 120:109-127

127

Roberts JA, White MF (2005a) An archaeal endonuclease displays
key properties of both eukaryal XPF-ERCCI1 and Mus81. J Biol
Chem 280(7):5924-5928

Roberts JA, White MF (2005b) DNA end-directed and processive
nuclease activities of the archacal XPF enzyme. Nuc Acids Res
33(20):6662—6670

Roberts TM, Kobor MS, Bastin-Shanower SA, Ii M, Horte SA, Gin
JW, Emili A, Rine J, Brill SJ, Brown GW (2006) Slx4 regulates
DNA damage phosphorylation of the BRCT checkpoint-
dependent domain protein Rtt107/Esc4. Mol Biol Cell 17
(1):539-548

Roseaulin L, Yamada Y, Tsutsui Y, Russell P, Iwasaki H, Arcangioli B
(2008) Mus81 is essential for sister chromatid recombination at
broken replication forks. EMBO J 27(9):1378-1387

Ross-Macdonald P, Roeder GS (1994) Mutation of a meiosis-specific
muts homolog decreases crossing over but not mismatch
correction. Cell 79:1069-1080

Saito TT, Youds JL, Boulton SJ, Colaiacovo MP (2009) Caenorhabditis
elegans HIM-18/SLX-4 interacts with SLX-1 and XPF-1 and
maintains genomic integrity in the germline by processing
recombination intermediates. PLoS Genet 5(11):e1000735

Schmidt H, Kapitza-Fecke P, Stephen ER, Gutz H (1989) Some of the
SWI genes of Schizosaccharomyces pombe also have a function
in the repair of radiation damage. Curr Genet 16(2):89—94

Schwacha A, Kleckner N (1994) Identification of joint molecules that
form frequently between homologs but rarely between sister
chromatids during yeast meiosis. Cell 76:51-63

Schwacha A, Kleckner N (1995) Identification of double Holliday
junctions as intermediates in meiotic recombination. Cell
83:783-791

Schwacha A, Kleckner N (1997) Interhomolog bias during meiotic
recombination: meiotic functions promote a highly differentiated
interhomolog-only pathway. Cell 90:1123-1135

Sekelsky JJ, Mckim KS, Chin GM, Hawley RS (1995) The
Drosophila meiotic recombination gene MEI-9 encodes a
homologue of the yeast excision repair protein Radl. Genetics
141(2):619-627

Smith GR, Boddy MN, Shanahan P, Russell P (2003) Fission yeast
Mus81-Emel Holliday junction resolvase is required for meiotic
crossing over but not for gene conversion. Genetics 165:2289—
2293

Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa
ME, Clark AB, Kunkel TA, Harper JW, Colaiacovo MP, Elledge
SJ (2010) A genetic screen identifies FAN1, a Fanconi anemia-
associated nuclease necessary for DNA interstrand crosslink
repair. Mol Cell 39(1):36-47

Staeva-Vieira E, Yoo S, Lehmann R (2003) An essential role of
DmRad51/SpnA in DNA repair and meiotic checkpoint control.
EMBO J 22(21):5863-5874

Stahl FW, Foss HM (2010) A two pathway analysis of meiotic
crossing over and gene conversion in Saccharamyces cerevisiae.
Genetics 186(2):3548

Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Prive GG (2005)
Sequence and structural analysis of BTB domain proteins.
Genome Biol 6(10):R82

Svendsen JM, Smogorzewska A, Sowa ME, O’Connell BC, Gygi SP,
Elledge SJ, Harper JW (2009) Mammalian BTBD12/SLX4
assembles a Holliday junction resolvase and is required for
DNA repair. Cell 138(1):63-77

Symington LS, Kolodner R (1985) Partial purification of an enzyme
from Saccharomyces cerevisiae that cleaves Holliday junctions.
Proc Natl Acad Sci USA 82(21):7247-7251

Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-
strand-break repair model for recombination. Cell 33:25-35

Tay YD, Wu L (2010) Overlapping roles for Yenl and MusS81 in cellular
Holliday junction processing. J Biol Chem 285(15):11427-11432

Taylor ER, McGowan CH (2008) Cleavage mechanism of human
MUS81-EMET1 acting on Holliday-junction structures. Proc Natl
Acad Sci USA 105(10):3757-3762

Toh GWL, Sugawara N, Dong JC, Toth R, Lee SE, Haber JE, Rouse J
(2010) Mecl/Tell-dependent phosphorylation of Slx4 stimulates
Rad1-Rad10-dependent cleavage of non-homologous DNA tails.
DNA Repair 9(6):718-726

Trowbridge K, McKim K, Brill SJ, Sekelsky J (2007) Synthetic
lethality of Drosophila in the absence of the MuS81 endonuclease
and the DmBLM helicase is associated with elevated apoptosis.
Genetics 176(4):1993-2001

van Vuuren AJ, Appeldoorn E, Odijk H, Yasui A, Jaspers NG,
Bootsma D, Hoeijmakers JH (1993) Evidence for a repair
enzyme complex involving ERCC1 and complementing activities
of ERCC4, ERCCI11 and xeroderma pigmentosum group F.
EMBO J 12(9):3693-3701

Vance JR, Wilson TE (2002) Yeast Tdp1 and Rad1-Rad10 function as
redundant pathways for repairing Top1 replicative damage. Proc
Natl Acad Sci USA 99:13669-13674

Wang TF, Kleckner N, Hunter N (1999) Functional specificity of
MutL homologs in yeast: evidence for three Mlhl-based
heterocomplexes with distinct roles during meiosis in recombi-
nation and mismatch correction. Proc Nat Acad Sci USA 96
(24):13914-13919

West SC (1995) Holliday junctions cleaved by Radl? Nature 373
(6509):27-28

West SC (1997) Processing of recombination intermediates by the
RuvABC proteins. Annu Rev Genet 31:213-244

Whitby MC (2005) Making crossovers during meiosis. Biochem Soc
Trans 33(Pt 6):1451-1455

Whitby MC, Dixon J (1998) Substrate specificity of the SpCcel
Holliday junction resolvase of Schizosaccharomyces pombe. ]
Biol Chem 273(52):35063-35073

Whitby MC, Osman F, Dixon J (2003) Cleavage of model replication
forks by fission yeast Mus81-Emel and budding yeast Mus81—
Mms4. J Biol Chem 278(9):6928—-6935

Wu LJ, Hickson ID (2003) The Bloom’s syndrome helicase
suppresses crossing-over during homologous recombination.
Nature 426:870-874

Yildiz O, Majumder S, Kramer B, Sekelsky JJ (2002) Drosophila
MUS312 interacts with the nucleotide excision repair endonuclease
MEI-9 to generate meiotic crossovers. Mol Cell 10:1503-1509

Yildiz O, Kearney H, Kramer BC, Sekelsky JJ (2004) Mutational
analysis of the Drosophila DNA repair and recombination gene
MEI-9. Genetics 167(1):263-273

Zalevsky J, MacQueen AJ, Duffy JB, Kemphues KJ, Villeneuve AM
(1999) Crossing over during Caenorhabditis elegans meiosis
requires a conserved MutS-based pathway that is partially
dispensable in budding yeast. Genetics 153(3):1271-1283

Zhang CY, Roberts TM, Yang J, Desai R, Brown GW (2006)
Suppression of genomic instability by Slx5 and SIx8 in
Saccharomyces cerevisiae. DNA Repair 5(3):336-346

@ Springer



	Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes
	Abstract
	Introduction
	Holliday junctions and the bacterial RuvC paradigm
	XPF endonuclease superfamily
	S. cerevisiae Rad1–Rad10/Drosophila melanogaster MEI9–ERCC1/human XPF–ERCC1
	S. cerevisiae Mus81–Mms4/Schizosaccharomyces pombe MUS81–EME1/human MUS81–EME1

	Yen1/GEN1: Rad2/XPG endonuclease superfamily
	Slx1–Slx4: URI–YIG family endonucleases
	A unified model for all eukaryotes appears unlikely
	Single Holliday and double Holliday junctions: rethinking the paradigm
	Conclusion and outlook
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


