Skip to main content

Advertisement

Log in

The effect of dissolved magnesium on creep of calcite II: transition from diffusion creep to dislocation creep

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We extended a previous study on the influence of Mg solute impurity on diffusion creep in calcite to include deformation under a broader range of stress conditions and over a wider range of Mg contents. Synthetic marbles were produced by hot isostatic pressing (HIP) mixtures of calcite and dolomite powders for different intervals (2–30 h) at 850°C and 300 MPa confining pressure. The HIP treatment resulted in high-magnesian calcite aggregates with Mg content ranging from 0.5 to 17 mol%. Both back-scattered electron images and chemical analysis suggested that the dolomite phase was completely dissolved, and that Mg distribution was homogeneous throughout the samples at the scale of about two micrometers. The grain size after HIP varied from 8 to 31 μm, increased with time at temperature, and decreased with increasing Mg content (>3.0 mol%). Grain size and time were consistent with a normal grain growth equation, with exponents from 2.4 to 4.7, for samples containing 0.5–17.0 mol% Mg, respectively. We deformed samples after HIP at the same confining pressure with differential stresses between 20 and 200 MPa using either constant strain rate or stepping intervals of loading at constant stresses in a Paterson gas-medium deformation apparatus. The deformation tests took place at between 700 and 800°C and at strain rates between 10−6 and 10−3 s−1. After deformation to strains of about 25%, a bimodal distribution of large protoblasts and small recrystallized neoblasts coexisted in some samples loaded at higher stresses. The deformation data indicated a transition in mechanism from diffusion creep to dislocation creep. At stresses below 40 MPa, the strength was directly proportional to grain size and decreased with increasing Mg content due to the reductions in grain size. At about 40 MPa, the sensitivity of log strain rate to log stress, (n), became greater than 1 and eventually exceeded 3 for stresses above 80 MPa. At a given strain rate and temperature, the stress at which that transition occurred was larger for samples with higher Mg content and smaller grain size. At given strain rates, constant temperature, and fixed grain size, the strength of calcite in the dislocation creep regime increased with solute content, while the strength in the diffusion creep regime was independent of Mg content. The results suggest that chemical composition will be an important element to consider when solid substitution can occur during natural deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anovitz LM, Essene EJ (1987) Phase-equilibria in the system caco3-mgco3-feco3. J Petrol 28(2):389–414

    Google Scholar 

  • Atkinson HV (1988) Theories of normal grain-growth in pure single-phase systems. Acta Metall 36(3):469–491. doi:10.1016/0001-6160(88)90079-X

    Article  Google Scholar 

  • Bae SI, Baik S (1994) Critical concentration of mgo for the prevention of abnormal grain-growth in alumina. J Am Ceram Soc 77(10):2499–2504. doi:10.1111/j.1151-2916.1994.tb04634.x

    Article  Google Scholar 

  • Bai Q, Wang ZC, Kohlstedt DL (1995) Manganese olivine. 1. Electrical conductivity. Phys Chem Miner 22(8):489–503. doi:10.1007/BF00209374

    Article  Google Scholar 

  • Barnhoorn A, Bystricky M, Burlini L, Kunze K (2004) The role of recrystallisation on the deformation behavior of calcite rocks: Large strain torsion experiments on Carrara marble. J Struct Geol 26(5):885–903. doi:10.1016/j.jsg.2003.11.024

    Article  Google Scholar 

  • Bestmann M, Kunze K, Matthews A (2000) Evolution of a calcite marble shear zone complex on Thassos island, Greece: microstructural and textural fabrics and their kinematic significance. J Struct Geol 22(11–12):1789–1807. doi:10.1016/S0191-8141(00)00112-7

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition-coefficients from elastic-moduli. Nature 372(6505):452–454. doi:10.1038/372452a0

    Article  Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210(3–4):383–397

    Article  Google Scholar 

  • Brook RJ (1976) Controlled grain growth. In: Wang F-Y (ed) Ceramic fabrication procedures. Academic Press, New York

    Google Scholar 

  • Bruhn DF, Olgaard DL, Dell’Angelo LN (1999) Evidence for enhanced deformation in two-phase rocks: experiments on the rheology of calcite-anhydrite aggregates. J Geophys Res Solid Earth 104(B1):707–724. doi:10.1029/98JB02847

    Article  Google Scholar 

  • Burkhard M (1990) Aspects of the large-scale Miocene deformation in the most external part of the Swiss Alps (sub-Alpine molasse to Jura fold belt). Eclogae Geol Helv 83(3):559–583

    Google Scholar 

  • Burkhard M (1993) Calcite twins, their geometry, appearance and significance as stress–strain markers and indicators of tectonic regime—a review. J Struct Geol 15(3–5):351–368. doi:10.1016/0191-8141(93)90132-T

    Article  Google Scholar 

  • Busch JP, Vanderpluijm BA (1995) Calcite textures, microstructures and rheological properties of marble mylonites in the bancroft shear zone, Ontario, Canada. J Struct Geol 17(5):677–688. doi:10.1016/0191-8141(94)00092-E

    Article  Google Scholar 

  • Byrnes AP, Wyllie PJ (1981) Subsolidus and melting relations for the join caco3-mgco3 at 10-kbar. Geochim Cosmochim Acta 45(3):321–328. doi:10.1016/0016-7037(81)90242-8

    Article  Google Scholar 

  • Carter KE (1992) Evolution of stacked, ductile shear zones in carbonates from midcrustal levels—Tuscan nappe, n-apennines, Italy. J Struct Geol 14(2):181–192. doi:10.1016/0191-8141(92)90055-2

    Article  Google Scholar 

  • Chiang Y-M, Dunbar B, Kingery WD (1997) Physical ceramics: principles for ceramics science and.Engineering. Mit series in materials science and engineering. Wiley, New York, p 522

    Google Scholar 

  • Chokshi AH, Yoshida H, Ikuhara Y, Sakuma T (2003) The influence of trace elements on grain boundary processes in yttria-stabilized tetragonal zirconia. Mater Lett 57(26–27):4196–4201. doi:10.1016/S0167-577X(03)00289-1

    Article  Google Scholar 

  • Cottrell AH, Jaswon MA (1949) Distribution of solute atoms round a slow dislocation. Proc R Soc Lond A Math Phys Sci 199:104–114. doi:10.1098/rspa.1949.0128

    Google Scholar 

  • Covey-Crump SJ (1997) The normal grain growth behavior of nominally pure calcitic aggregates. Contrib Mineral Petrol 129(2–3):239–254. doi:10.1007/s004100050335

    Article  Google Scholar 

  • Covey-Crump SJ (1998) Evolution of mechanical state in Carrara marble during deformation at 400° to 700°C. J Geophys Res Solid Earth 103(B12):29781–29794. doi:10.1029/1998JB900005

    Article  Google Scholar 

  • Covey-Crump SJ (2001) Variation of the exponential and power law creep parameters with strain for Carrara marble deformed at 120 degrees to 400 degrees c. Geophys Res Lett 28(12):2301–2304. doi:10.1029/2000GL012692

    Article  Google Scholar 

  • Davis N, Kronenberg A, Newman J (2005) Plasticity and diffusion creep of dolomite. American Geophysical Union, Fall meeting 2005, abstract# MR33A-0152

  • Davis NE, Newman J, Kronenberg AK (2003) High temperature deformation of stoichiometric dolomite. AGU 2003:S22A–0433

    Google Scholar 

  • de Bresser H, Evans B, Renner J (2002) Estimating the strength of calcite rocks under natural conditions. In: de Meer S, Drury MR, de Bresser JHP, Pennock G (eds) Deformation mechanisms, rheology, tectonics, current status future perspectives. Geolog. Society of London, London, pp 293–307

    Google Scholar 

  • de Bresser JHP (1991) Intracrystalline deformation of calcite. Geol Ultraiectina 79:1–191

    Google Scholar 

  • de Bresser JHP (1996) Steady state dislocation densities in experimentally deformed calcite materials: single crystals versus polycrystals. J Geophys Res Solid Earth 101(B10):22189–22201. doi:10.1029/96JB01759

    Article  Google Scholar 

  • de Bresser JHP (2002) On the mechanism of dislocation creep of calcite at high temperature: inferences from experimentally measured pressure sensitivity and strain rate sensitivity of flow stress. J Geophys Res Solid Earth 107(B12). doi:10.1029/2002JB001812

  • de Bresser JHP, Spiers CJ (1993) Slip systems in calcite single crystals deformed at 300–800ºc. J Geophys Res Sol Earth 98(B4):6397–6409. doi:10.1029/92JB02044

    Article  Google Scholar 

  • de Bresser JHP, Ter Heege JH, Spiers CJ (2001) Grain size reduction by dynamic recrystallization: can it result in major theological weakening? Int J Earth Sci 90(1):28–45. doi:10.1007/s005310000149

    Article  Google Scholar 

  • de Bresser JHP, Urai JL, Olgaard DL (2005) Effect of water on the strength and microstructure of Carrara marble axially compressed at high temperature. J Struct Geol 27(2):265–281. doi:10.1016/j.jsg.2004.10.002

    Article  Google Scholar 

  • Dresen G, Evans B, Olgaard DL (1998) Effect of quartz inclusions on plastic flow in marble. Geophys Res Lett 25(8):1245–1248. doi:10.1029/98GL00730

    Article  Google Scholar 

  • Drury MR, Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics 172(3–4):235–253. doi:10.1016/0040-1951(90)90033-5

    Article  Google Scholar 

  • Duong H, Beeman M, Wolfenstine J (1993) Creep-behavior of potassium-chloride rubidium chloride solid-solution alloys. J Am Ceram Soc 76(1):185–191. doi:10.1111/j.1151-2916.1993.tb03705.x

    Article  Google Scholar 

  • Duong H, Beeman M, Wolfenstine J (1994) High-temperature creep-behavior and substructure in kcl-kbr solid-solution alloys. Acta Metall Mater 42(3):1001–1012. doi:10.1016/0956-7151(94)90294-1

    Article  Google Scholar 

  • Essene EJ (1983) Solid solutions and solvi amoun metamorphic carbonates with applications to geologic thermobarometry. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry. Reviews in mineralogy. American Mineralogical Society, Washington, DC, pp 77–96

    Google Scholar 

  • Evans B, Renner J, Hirth G (2001) A few remarks on the kinetics of static grain growth in rocks. Int J Earth Sci 90(1):88–103. doi:10.1007/s005310000150

    Article  Google Scholar 

  • Freund D, Rybacki E, Dresen G (2001) Effect of impurities on grain growth in synthetic calcite aggregates. Phys Chem Miner 28(10):737–745. doi:10.1007/s002690100196

    Article  Google Scholar 

  • Freund D, Wang ZC, Rybacki E, Dresen G (2004) High-temperature creep of synthetic calcite aggregates: influence of Mn-content. Earth Planet Sci Lett 226(3–4):433–448. doi:10.1016/j.epsl.2004.06.020

    Article  Google Scholar 

  • Frost HJ (1982) Deformation mechanism and fracture mechanism maps. CIM Bull 75(842):110–110

    Google Scholar 

  • Goetze C, Kohlstedt DL (1977) Dislocation-structure of experimentally deformed marble. Contrib Mineral Petrol 59(3):293–306. doi:10.1007/BF00374558

    Article  Google Scholar 

  • Griggs D, Miller WB (1951) Deformation of Yule marble: part I—compression and extension experiments on dry Yule marble at 10,000 atmospheres confining pressure, room temperature. Geol Soc Am Bull 62(8):853–862. doi:10.1130/0016-7606(1951)62[853:DOYMPI]2.0.CO;2

    Article  Google Scholar 

  • Heard HC (1960) Transition from brittle to ductile flow in Solnhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure rock deformation: Geological Society of America Memoir, 79:193–226

  • Heard HC (1963) Effect of large changes in strain rate in the experimental deformation of Yule marble. J Geol 71:162–195

    Google Scholar 

  • Heard HC, Raleigh CB (1972) Steady-state flow in marble at 500° to 800°C. Geol Soc Am Bull 83(4):936–956. doi:10.1130/0016-7606(1972)83[935:SFIMAT]2.0.CO;2

    Article  Google Scholar 

  • Heitzmann P (1987) Calcite mylonites in the central Alpine root zone. Tectonophysics 135(1–3):207–215. doi:10.1016/0040-1951(87)90162-4

    Article  Google Scholar 

  • Herwegh M, Kunze K (2002) The influence of nano-scale second-phase particles on deformation of fine grained calcite mylonites. J Struct Geol 24(9):1463–1478. doi:10.1016/S0191-8141(01)00144-4

    Article  Google Scholar 

  • Herwegh M, Xiao XH, Evans B (2003) The effect of dissolved magnesium on diffusion creep in calcite. Earth Planet Sci Lett 212(3–4):457–470. doi:10.1016/S0012-821X(03)00284-X

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the earth’s mantle. Nature 427(6976):699–703. doi:10.1038/nature02259

    Article  Google Scholar 

  • Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system ii: Applications of interface enrichment to mantle geochemistry. Geochim Cosmochim Acta 71(5):1281–1289. doi:10.1016/j.gca.2006.11.020

    Article  Google Scholar 

  • Hitchings RS, Paterson MS, Bitmead J (1989) Effects of iron and magnetite additions in olivine pyroxene rheology. Phys Earth Planet Inter 55(3–4):277–291. doi:10.1016/0031-9201(89)90076-9

    Article  Google Scholar 

  • Hobbs BE (1984) Point defect chemistry of minerals under a hydrothermal environment. J Geophys Res 89(B6):4026–4038. doi:10.1029/JB089iB06p04026

    Article  Google Scholar 

  • Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and join caco3-mgco3 to 36 kb. Geochim Cosmochim Acta 39(1):35–53. doi:10.1016/0016-7037(75)90183-0

    Article  Google Scholar 

  • Janczuk B, Chibowski E, Staszczuk P (1983) Determination of surface free-energy components of marble. J Colloid Interface Sci 96(1):1–6. doi:10.1016/0021-9797(83)90002-4

    Article  Google Scholar 

  • Jordan PG (1987) The deformational behavior of bimineralic limestone-halite aggregates. Tectonophysics 135(1–3):185–197. doi:10.1016/0040-1951(87)90160-0

    Article  Google Scholar 

  • Kitabjian PH, Garg A, Noebe RD, Nix WD (1999) High-temperature deformation behavior of NiAl(Ti) solid-solution single crystals. Metal Mater Trans Part A Phys Metal Mater Sci 30(3):587–600

    Article  Google Scholar 

  • Knipe RJ (1980) Distribution of impurities in deformed quartz and its implications for deformation studies. Tectonophysics 64(1–2):T11–T18. doi:10.1016/0040-1951(80)90255-3

    Article  Google Scholar 

  • Kohlstedt DL (2006) The role of water in high-temperature rock deformation, Water in nominally anhydrous minerals. Rev Mineral Geochem 62:377–396. doi:10.2138/rmg.2006.62.16

    Article  Google Scholar 

  • Kohlstedt DL, Evans B, Mackwell SJ (1995) Strength of the lithosphere—constraints imposed by laboratory experiments. J Geophys Res Solid Earth 100(B9):17587–17602. doi:10.1029/95JB01460

    Article  Google Scholar 

  • Liu M, Evans B (1997) Dislocation recovery kinetics in single-crystal calcite. J Geophys Res Solid Earth 102(B11):24801–24809. doi:10.1029/97JB01892

    Article  Google Scholar 

  • Lücke K, Stüwe HP (1971) On the theory of impurity controlled grain boundary motion. Acta Metall 19:1087–1099. doi:10.1016/0001-6160(71)90041-1

    Article  Google Scholar 

  • Mackenzie FT, Bischoff WD, Bishop FC, Loijens M, Schoonmaker J, Wollast R (1983) Magnesian calcites: Low-temperature occurrence, solubility, and solid-solution behavior. In: Reeder R (ed) Carbonates: Mineralogy and chemistry. Reviews in mineralogy. Mineralogical Society of America, Washington DC, pp 97–144

    Google Scholar 

  • Mohamed FA, Langdon TG (1975) Creep-behavior of ceramic solid-solution alloys. J Am Ceram Soc 58(11–1):533–534

    Article  Google Scholar 

  • Molli G, Conti P, Giorgetti G, Meccheri M, Oesterling N (2000) Microfabric study on the deformational and thermal history of the Alpi apuane marbles (Carrara marbles), Italy. J Struct Geol 22(11–12):1809–1825. doi:10.1016/S0191-8141(00)00086-9

    Article  Google Scholar 

  • Molli G, Heilbronner R (1999) Microstructures associated with static and dynamic recrystallization of Carrara marble (Alpi apuane, nw tuscany, Italy). Geologie En Mijnbouw Neth J Geosci 78(1):119–126. doi:10.1023/A:1003826904858

    Article  Google Scholar 

  • Nesse WD (2000) Introduction to mineralogy. Oxford University Press, New York, p 442

    Google Scholar 

  • Olgaard DL, Evans B (1986) Effect of 2nd-phase particles on grain-growth in calcite. J Am Ceram Soc 69(11):C272–C277. doi:10.1111/j.1151-2916.1986.tb07374.x

    Article  Google Scholar 

  • Olgaard DL, Evans B (1988) Grain-growth in synthetic marbles with added mica and water. Contrib Mineral Petrol 100(2):246–260. doi:10.1007/BF00373591

    Article  Google Scholar 

  • Paterson MS (1976) Some current aspects of experimental rock deformation. Philos Trans R Soc Lond Ser Part A Math Phys Eng Sci 283(1312):163–172

    Article  Google Scholar 

  • Paterson MS (1990) Rock deformation experimentation. Geophys Monogr 56:187–194

    Google Scholar 

  • Paterson MS (2001) Relating experimental and geological theology. Int J Earth Sci 90(1):157–167. doi:10.1007/s005310000158

    Article  Google Scholar 

  • Pfiffner OA (1982) Deformation mechanisms and flow regimes in limestones from the helvetic zone of the Swiss Alps. J Struct Geol 4(4):429–442. doi:10.1016/0191-8141(82)90034-7

    Article  Google Scholar 

  • Pieri M, Burlini L, Kunze K, Stretton I, Olgaard DL (2001) Rheological and microstructural evolution of Carrara marble with high shear strain: results from high temperature torsion experiments. J Struct Geol 23(9):1393–1413. doi:10.1016/S0191-8141(01)00006-2

    Article  Google Scholar 

  • Poirier JP (1985) Creep of crystals; high-temperature deformation processes in metals, ceramics and minerals

  • Powers JD, Glaeser AM (1998) Grain boundary migration in ceramics. Interf Sci 6(1–2):23–39. doi:10.1023/A:1008656302007

    Article  Google Scholar 

  • Ranalli G, Murphy DC (1987) Rheological stratification of the lithosphere. Tectonophysics 132(4):281–295. doi:10.1016/0040-1951(87)90348-9

    Article  Google Scholar 

  • Reeder RJ (1983) Tem as a tool in study of carbonate crystal-chemistry. Aapg Bull Am Assoc Petrol Geol 67(3):538–539

    Google Scholar 

  • Reeder RJ (2000) Constraints on cation order in calcium-rich sedimentary dolomite. Aquat Geochem 6(2):213–226. doi:10.1023/A:1009659122772

    Article  Google Scholar 

  • Renner J, Evans B (2002) Do calcite rocks obey the power-law creep equation? In: de Meer S, Drury MR, de Bresser JHP, Pennock GM (eds) Deformation mechanisms, rheology and tectonics: current status and future perspectives. Special publications. Geological Society, London, pp 293–307

    Google Scholar 

  • Renner J, Evans B, Siddiqi G (2002) Dislocation creep of calcite. J Geophys Res Solid Earth 107(B12). doi:10.1029/2001JB001680

  • Renner J, Siddiqi G, Evans B (2007) Plastic flow of two-phase marbles. J Geophys Res Solid Earth 112(B7). doi:10.1029/2005JB004134

  • Rollett AD (2004) Modeling the impact of grain boundary properties on microstructural evolution. Recrystallization and grain growth, pts 1 and 2. Materials science forum, pp 707–714

  • Rutter EH (1972) The influence of interstitial water on the rheological behavior of calcite rocks. Tectonophysics 14(1):13–33. doi:10.1016/0040-1951(72)90003-0

    Article  Google Scholar 

  • Rutter EH (1974) Influence of temperature, strain rate and interstitial water in experimental deformation of calcite rocks. Tectonophysics 22(3–4):311–334. doi:10.1016/0040-1951(74)90089-4

    Article  Google Scholar 

  • Rutter EH (1984) The influence of temperature, strain rate, and interstitial water in the experimental deformation of calcite rocks. Tectonophysics 43:311–334

    Google Scholar 

  • Rutter EH (1995) Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara marble. J Geophys Res Solid Earth 100(B12):24651–24663. doi:10.1029/95JB02500

    Article  Google Scholar 

  • Rutter EH (1999) On the relationship between the formation of shear zones and the form of the flow law for rocks undergoing dynamic recrystallization. Tectonophysics 303(1–4):147–158. doi:10.1016/S0040-1951(98)00261-3

    Article  Google Scholar 

  • Rybacki E, Paterson MS, Wirth R, Dresen G (2003) Rheology of calcite-quartz aggregates deformed to large strain in torsion. J Geophys Res Solid Earth 108(B2):2089. doi:10.1029/2002JB001833

  • Schenk O, Urai JL, Evans B (2005) The effect of water on recrystallization behavior and grain boundary morphology in calcite-observations of natural marble mylonites. J Struct Geol 27(10):1856–1872. doi:10.1016/j.jsg.2005.05.015

    Article  Google Scholar 

  • Schmid SM (1976) Rheological evidence for changes in the deformation mechanism of solenhofen limestone towards low stresses. Tectonophysics 31(1–2):T21–T28. doi:10.1016/0040-1951(76)90160-8

    Article  Google Scholar 

  • Schmid SM (1977) Superplastic flow in fine-grained limestone. Tectonophysics 43(3–4):257–291. doi:10.1016/0040-1951(77)90120-2

    Article  Google Scholar 

  • Schmid SM, Paterson MS, Boland JN (1980) High temperature flow and dynamic recrystallization in Carrara marble. Tectonophysics 65(3–4):245–280. doi:10.1016/0040-1951(80)90077-3

    Article  Google Scholar 

  • Siddiqi G, Evans B, Dresen G, Freund D (1997) Effect of semibrittle deformation on transport properties of calcite rocks. J Geophys Res Solid Earth 102(B7):14765–14778. doi:10.1029/97JB01038

    Article  Google Scholar 

  • Sotin C, Poirier JP (1984) Ananlysis of high-temperature creep experiments by generalized nonlinear inversion. Mech Mater 3(4):311–317. doi:10.1016/0167-6636(84)90031-0

    Article  Google Scholar 

  • Spears MA, Evans AG (1982) Microstructure development during final intermediate stage sintering. 2. Grain and pore coarsening. Acta Metall 30(7):1281–1289. doi:10.1016/0001-6160(82)90146-8

    Article  Google Scholar 

  • Spiers CJ (1979) Fabric development in calcite polycrystals deformed at 400-degrees-c. Bull De Mineralogie 102(2–3):282–289

    Google Scholar 

  • Ter Heege JH, de Bresser JHP, Spiers CJ (2004) Composite flow laws for crystalline materials with log-normally distributed grain size: Theory and application to olivine. J Struct Geol 26(9):1693–1705. doi:10.1016/j.jsg.2004.01.008

    Article  Google Scholar 

  • Tetard F, Bernache-Assollant D, Champion E (1999) Pre-eutectic densification of calcium carbonate doped with lithium carbonate. J Therm Anal Calorim 56(3):1461–1473. doi:10.1023/A:1010191414628

    Article  Google Scholar 

  • Tullis J, Yund RA (1982) Grain growth kinetics of quartz and calcite aggregates. J Geol 90(3):301–318

    Google Scholar 

  • Urai JL, Means WD, Lister GS (1986) Dynamic recrystallization of minerals. In: Hobbs BEH and Hugh C (Eds) Mineral rock deformation: Laboratory studies, paterson volume. Geophysical Monograph, Washington DC, pp 161–200

  • Vanderpluijm BA (1991) Marble mylonites in the bancroft shear zone, Ontario, Canada - microstructures and deformation mechanisms. J Struct Geol 13(10):1125–1135. doi:10.1016/0191-8141(91)90073-R

    Article  Google Scholar 

  • Walker AN, Rutter EH, Brodie KH (1990) Experimental study of grain-size sensitive flow of synthetic, hot-pressed calcite rocks. In: Knipe RJ, Rutter EH (eds) Deformation mechanisms, rheology and tectonics. Geological Society Special Publications, pp 259–284

  • Wang ZC, Bai Q, Dresen G, Wirth R (1996) High-temperature deformation of calcite single crystals. J Geophys Res Solid Earth 101(B9):20377–20390. doi:10.1029/96JB01186

    Article  Google Scholar 

  • Wenk HR, Barber D, Reeder R (1983) Microstructures in carbonates. In: Reeder R (ed) Carbonates: Mineralogy and chemistry. Reviews in mineralogy. American Mineralogical Society, Washington DC, pp 301–369

    Google Scholar 

  • Wenk HR, Bulakh A (2004) Minerals, their constitution and origin. University Press, Cambridge, p 646

    Google Scholar 

  • Wenk HR, Hu MS, Lindsey T, Morris JW (1991) Superstructures in ankerite and calcite. Phys Chem Miner 17(6):527–539. doi:10.1007/BF00202231

    Article  Google Scholar 

  • Xiao XH, Evans B (2003) Shear-enhanced compaction during non-linear viscous creep of porous calcite-quartz aggregates. Earth Planet Sci Lett 216(4):725–740. doi:10.1016/S0012-821X(03)00536-3

    Article  Google Scholar 

  • Yan MF, Cannon RF, Bowen HK (1977) Grain boundary migration in ceramics. In: Fulrath RM, Pask JA (eds) Ceram microstructures—76. Westview Press, Boulder, pp 276–307

    Google Scholar 

  • Yin XL (1996) The deformation mechanism of marble mylonites in the dashankou shear zone. J Geom 2(4):61–67

    Google Scholar 

  • Zhang JZ, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations. Am Mineral 84(5–6):861–870

    Google Scholar 

  • Zhao YH, Zimmerman M and Kohlstedt DL, in press (2008) Effect of iron content on the creep behavior of olivine: 1. Anhydrous conditions

  • Zhu WL, Evans B, Bernabe Y (1999) Densification and permeability reduction in hot-pressed calcite: a kinetic model. J Geophys Res Solid Earth 104(11):25501–25511. doi:10.1029/1999JB900230

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Xiaohui Xiao who provides us extensive assistance with the Paterson Rig at MIT. We benefited from the help from Ulrich Mok, Jock Hirst, Nilanjan Chatterjee, and Yong Zhang with our experimental studies. We are grateful for the constructive comments by the Editor, Jonathan Blundy, and anonymous reviewers, which have helped us to improve the manuscript. This research was supported by NSF’s grant EAR-050412 and 0711139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Xu.

Additional information

Communicated by J. Blundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Renner, J., Herwegh, M. et al. The effect of dissolved magnesium on creep of calcite II: transition from diffusion creep to dislocation creep. Contrib Mineral Petrol 157, 339–358 (2009). https://doi.org/10.1007/s00410-008-0338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0338-5

Keywords

Navigation