Skip to main content

Advertisement

Log in

What we know about TMEM106B in neurodegeneration

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Frontotemporal lobar degeneration is a neurodegenerative disorder affecting over 50,000 people in the United States alone. The most common pathological subtype of FTLD is the presence of ubiquitinated TAR DNA binding protein 43 (TDP-43) accumulations in frontal and temporal brain regions at autopsy. While some cases of FTLD-TDP can be attributed to the inheritance of disease-causing mutations, the majority of cases arise with no known genetic cause. In 2010, the first genome-wide association study was conducted in patients with FTLD-TDP to determine potential genetic risk factors for this homogenous subgroup of dementia patients, leading to the identification of the TMEM106B locus on chromosome 7. In this manuscript, we review the initial discovery and replication studies describing TMEM106B variants as disease risk factors and modifiers in TDP-43 proteinopathies, such as FTLD-TDP caused by progranulin (GRN) or chromosome 9 open reading frame 72 (C9orf72) mutations, as well as Alzheimer’s disease and hippocampal sclerosis. We further summarize what is currently known about the previously uncharacterized TMEM106B protein and its role as a potential regulator of lysosomal function, and we discuss how modifying TMEM106B levels might uncover promising therapeutic strategies for individuals suffering from TDP-43 proteinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams HH, Verhaaren BF, Vrooman HA, Uitterlinden AG, Hofman A, van Duijn CM et al (2014) TMEM106B influences volume of left-sided temporal lobe and interhemispheric structures in the general population. Biol Psychiatry 76:503–508

    Article  CAS  PubMed  Google Scholar 

  2. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aoki N, Murray ME, Ogaki K, Fujioka S, Rutherford NJ, Rademakers R et al (2015) Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A. Acta Neuropathol 129:53–64

    Article  CAS  PubMed  Google Scholar 

  4. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  CAS  PubMed  Google Scholar 

  5. Baizabal-Carvallo JF, Jankovic J (2016) Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat Rev Neurol 12:175–185

    Article  CAS  PubMed  Google Scholar 

  6. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  PubMed  Google Scholar 

  7. Boxer AL, Miller BL (2005) Clinical features of frontotemporal dementia. Alzheimer Dis Assoc Disord 19(Suppl 1):S3–S6

    Article  PubMed  Google Scholar 

  8. Brady OA, Meng P, Zheng Y, Mao Y, Hu F (2011) Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. J Neurochem 116:248–259

    Article  CAS  PubMed  Google Scholar 

  9. Brady OA, Zheng Y, Murphy K, Huang M, Hu F (2012) The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet 22:685–695

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brady OA, Zhou X, Hu F (2014) Regulated intramembrane proteolysis of the frontotemporal lobar degeneration risk factor, TMEM106B, by signal peptide peptidase-like 2a (SPPL2a). J Biol Chem 289:19670–19680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Busch JI, Martinez-Lage M, Ashbridge E, Grossman M, Van Deerlin VM, Hu F et al (2013) Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain. Acta Neuropathol Commun 1:36

    Article  PubMed  PubMed Central  Google Scholar 

  12. Busch JI, Unger TL, Jain N, Skrinak RT, Charan RA, Chen-Plotkin AS (2016) Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. Hum Mol Genet. doi:10.1093/hmg/ddw127

    PubMed  Google Scholar 

  13. Cerami C, Scarpini E, Cappa SF, Galimberti D (2012) Frontotemporal lobar degeneration: current knowledge and future challenges. J Neurol 259:2278–2286

    Article  PubMed  Google Scholar 

  14. Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicelli-Daley L et al (2012) TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci 32:11213–11227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cruchaga C, Graff C, Chiang HH, Wang J, Hinrichs AL, Spiegel N et al (2011) Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol 68:581–586

    PubMed  PubMed Central  Google Scholar 

  16. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  CAS  PubMed  Google Scholar 

  17. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deming Y, Cruchaga C (2014) TMEM106B: a strong FTLD disease modifier. Acta Neuropathol 127:419–422

    Article  PubMed  Google Scholar 

  19. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M et al (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76:467–474

    Article  CAS  PubMed  Google Scholar 

  20. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Muller K et al (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 18:631–636

    Article  CAS  PubMed  Google Scholar 

  21. Gallagher MD, Suh E, Grossman M, Elman L, McCluskey L, Van Swieten JC et al (2014) TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol 127:407–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J et al (2006) Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 15:2988–3001

    Article  CAS  PubMed  Google Scholar 

  23. Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Philtjens S, Heeman B et al (2015) Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85:2116–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J et al (2005) Comparison of family histories in FTLD subtypes and related tauopathies. Neurology 65:1817–1819

    Article  CAS  PubMed  Google Scholar 

  25. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gotzl JK, Mori K, Damme M, Fellerer K, Tahirovic S, Kleinberger G et al (2014) Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol 127:845–860

    PubMed  Google Scholar 

  27. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91

    Article  CAS  PubMed  Google Scholar 

  28. Henne WM, Stenmark H, and Emr SD (2013) Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5:a016766

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hernandez I, Rosende-Roca M, Alegret M, Mauleon A, Espinosa A, Vargas L et al (2015) Association of TMEM106B rs1990622 marker and frontotemporal dementia: evidence for a recessive effect and meta-analysis. J Alzheimers Dis 43:325–334

    CAS  PubMed  Google Scholar 

  30. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  CAS  PubMed  Google Scholar 

  31. Isaacs AM, Johannsen P, Holm I, Nielsen JE (2011) Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res 8:246–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson JK, Diehl J, Mendez MF, Neuhaus J, Shapira JS, Forman M et al (2005) Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol 62:925–930

    PubMed  Google Scholar 

  33. Josephs KA, Holton JL, Rossor MN, Godbolt AK, Ozawa T, Strand K et al (2004) Frontotemporal lobar degeneration and ubiquitin immunohistochemistry. Neuropathol Appl Neurobiol 30:369–373

    Article  CAS  PubMed  Google Scholar 

  34. Jun GIbrahim-Verbaas CA, Vronskaya M, Jun GIbrahim-Verbaas JC, Chung J, Naj AC et al (2016) A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry 21:108–117

    Article  Google Scholar 

  35. Jun MH, Han JH, Lee YK, Jang DJ, Kaang BK, Lee JA (2015) TMEM106B, a frontotemporal lobar dementia (FTLD) modifier, associates with FTD-3-linked CHMP2B, a complex of ESCRT-III. Mol Brain 8:85

    Article  PubMed  PubMed Central  Google Scholar 

  36. Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A et al (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123(Pt 12):2512–2518

    Article  PubMed  Google Scholar 

  37. Lang CM, Fellerer K, Schwenk BM, Kuhn PH, Kremmer E, Edbauer D et al (2012) Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J Biol Chem 287:19355–19365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lattante S, Le Ber I, Galimberti D, Serpente M, Rivaud-Pechoux S, Camuzat A et al (2014) Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Neurobiol Aging 35(2658):e2651–e2655

    Google Scholar 

  39. Lemberg MK (2011) Intramembrane proteolysis in regulated protein trafficking. Traffic 12:1109–1118

    Article  CAS  PubMed  Google Scholar 

  40. Lipton AM, White CL 3rd, Bigio EH (2004) Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathol 108:379–385

    Article  PubMed  Google Scholar 

  41. Mackenzie IR, Baker M, Pickering-Brown S, Hsiung GY, Lindholm C, Dwosh E et al (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129:3081–3090

    Article  PubMed  Google Scholar 

  42. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mackenzie IR, Rademakers R (2007) The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics 8:237–248

    Article  CAS  PubMed  Google Scholar 

  44. Mackenzie IR, Shi J, Shaw CL, Duplessis D, Neary D, Snowden JS et al (2006) Dementia lacking distinctive histology (DLDH) revisited. Acta Neuropathol 112:551–559

    Article  PubMed  Google Scholar 

  45. Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL et al (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci USA 107:20382–20387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyer H, Weihl CC (2014) The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci 127:3877–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murray ME, Cannon A, Graff-Radford NR, Liesinger AM, Rutherford NJ, Ross OA et al (2014) Differential clinicopathologic and genetic features of late-onset amnestic dementias. Acta Neuropathol 128:411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR et al (2011) Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 122:673–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nelson PT, Wang WX, Partch AB, Monsell SE, Valladares O, Ellingson SR et al (2015) Reassessment of risk genotypes (GRN, TMEM106B, and ABCC9 variants) associated with hippocampal sclerosis of aging pathology. J Neuropathol Exp Neurol 74:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922–2931

    Article  PubMed  PubMed Central  Google Scholar 

  51. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  52. Nicholson AM, Finch NA, Wojtas A, Baker MC, Perkerson RB 3rd, Castanedes-Casey M et al (2013) TMEM106B p. T185S regulates TMEM106B protein levels: implications for frontotemporal dementia. J Neurochem 126:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    Article  CAS  PubMed  Google Scholar 

  54. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R et al (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130:77–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R (2016) Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem 138:32–53

    Article  CAS  PubMed  Google Scholar 

  56. Premi E, Formenti A, Gazzina S, Archetti S, Gasparotti R, Padovani A et al (2014) Effect of TMEM106B polymorphism on functional network connectivity in asymptomatic GRN mutation carriers. JAMA Neurol 71:216–221

    Article  PubMed  Google Scholar 

  57. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621

    Article  CAS  PubMed  Google Scholar 

  59. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rohrer JD, Geser F, Zhou J, Gennatas ED, Sidhu M, Trojanowski JQ et al (2010) TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 75:2204–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rollinson S, Mead S, Snowden J, Richardson A, Rohrer J, Halliwell N et al (2011) Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis. Neurobiol Aging 32(758):e751–e757

    Google Scholar 

  62. Rosso SM, Donker Kaat L, Baks T, Joosse M, de Koning I, Pijnenburg Y et al (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126:2016–2022

    Article  PubMed  Google Scholar 

  63. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    Article  CAS  PubMed  Google Scholar 

  64. Rutherford NJ, Carrasquillo MM, Li M, Bisceglio G, Menke J, Josephs KA et al (2012) TMEM106B risk variant is implicated in the pathologic presentation of Alzheimer disease. Neurology 79:717–718

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477

    CAS  PubMed  Google Scholar 

  66. Schwenk BM, Lang CM, Hogl S, Tahirovic S, Orozco D, Rentzsch K et al (2014) The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. Embo J 33:450–467

    CAS  PubMed  Google Scholar 

  67. Seelaar H, Klijnsma KY, de Koning I, van der Lugt A, Chiu WZ, Azmani A et al (2010) Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration. J Neurol 257:747–753

    Article  CAS  PubMed  Google Scholar 

  68. Serpente M, Fenoglio C, Clerici F, Bonsi R, Arosio B, Cioffi SM et al (2015) Transmembrane protein 106B gene (TMEM106B) variability and influence on progranulin plasma levels in patients with Alzheimer’s disease. J Alzheimers Dis 43:757–761

    CAS  PubMed  Google Scholar 

  69. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O et al (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H et al (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37:806–808

    Article  CAS  PubMed  Google Scholar 

  71. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Snowden JS, Pickering-Brown SM, Mackenzie IR, Richardson AM, Varma A, Neary D et al (2006) Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. Brain 129:3091–3102

    Article  CAS  PubMed  Google Scholar 

  73. Stagi M, Klein ZA, Gould TJ, Bewersdorf J, Strittmatter SM (2014) Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol Cell Neurosci 61:226–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Urushitani M, Sato T, Bamba H, Hisa Y, Tooyama I (2010) Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J Neurosci Res 88:784–797

    CAS  PubMed  Google Scholar 

  75. van Blitterswijk M, Mullen B, Nicholson AM, Bieniek KF, Heckman MG, Baker MC et al (2014) TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol 127:397–406

    Article  PubMed  PubMed Central  Google Scholar 

  76. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR et al (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet 42:234–239

    Article  PubMed  PubMed Central  Google Scholar 

  77. van der Zee J, Gijselinck I, Pirici D, Kumar-Singh S, Cruts M, Van Broeckhoven C (2007) Frontotemporal lobar degeneration with ubiquitin-positive inclusions: a molecular genetic update. Neurodegener Dis 4:227–235

    Article  PubMed  Google Scholar 

  78. van der Zee J, Van Langenhove T, Kleinberger G, Sleegers K, Engelborghs S, Vandenberghe R et al (2011) TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain 134:808–815

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vass R, Ashbridge E, Geser F, Hu WT, Grossman M, Clay-Falcone D et al (2011) Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathol 121:373–380

    Article  PubMed  Google Scholar 

  80. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH et al (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102:16426–16431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ et al (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci USA 109:15024–15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang IF, Tsai KJ, Shen CK (2013) Autophagy activation ameliorates neuronal pathogenesis of FTLD-U mice: a new light for treatment of TARDBP/TDP-43 proteinopathies. Autophagy 9:239–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang X, Fan H, Ying Z, Li B, Wang H, Wang G (2010) Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci Lett 469:112–116

    Article  CAS  PubMed  Google Scholar 

  84. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    Article  CAS  PubMed  Google Scholar 

  85. Wood EM, Falcone D, Suh E, Irwin DJ, Chen-Plotkin AS, Lee EB et al (2013) Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurol 70:1411–1417

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yu L, De Jager PL, Yang J, Trojanowski JQ, Bennett DA, Schneider JA (2015) The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology 84:927–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zarow C, Sitzer TE, Chui HC (2008) Understanding hippocampal sclerosis in the elderly: epidemiology, characterization, and diagnostic issues. Curr Neurol Neurosci Rep 8:363–370

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Rosa Rademakers is funded by National Institutes of Health Grants P50 AG016574, P50 NS072187, R01 NS080882 and R01 NS076471, the ALS Therapy Alliance, and the Consortium for Frontotemporal Dementia. Alexandra Nicholson is funded the Mayo Clinic Edward C. Kendall Research Fellowship. Images of TMEM106B neuronal staining are courtesy of Dr. Dennis Dickson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Rademakers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholson, A.M., Rademakers, R. What we know about TMEM106B in neurodegeneration. Acta Neuropathol 132, 639–651 (2016). https://doi.org/10.1007/s00401-016-1610-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1610-9

Keywords

Navigation