Skip to main content

Advertisement

Log in

Gliomatosis cerebri: no evidence for a separate brain tumor entity

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

An Erratum to this article was published on 07 January 2016

Abstract

Gliomatosis cerebri (GC) is presently considered a distinct astrocytic glioma entity according to the WHO classification for CNS tumors. It is characterized by widespread, typically bilateral infiltration of the brain involving three or more lobes. Genetic studies of GC have to date been restricted to the analysis of individual glioma-associated genes, which revealed mutations in the isocitrate dehydrogenase 1 (IDH1) and tumor protein p53 (TP53) genes in subsets of patients. Here, we report on a genome-wide analysis of DNA methylation and copy number aberrations in 25 GC patients. Results were compared with those obtained for 105 patients with various types of conventional, i.e., non-GC gliomas including diffuse astrocytic gliomas, oligodendrogliomas and glioblastomas. In addition, we assessed the prognostic role of methylation profiles and recurrent DNA copy number aberrations in GC patients. Our data reveal that the methylation profiles in 23 of the 25 GC tumors corresponded to either IDH mutant astrocytoma (n = 6), IDH mutant and 1p/19q codeleted oligodendroglioma (n = 5), or IDH wild-type glioblastoma including various molecular subgroups, i.e., H3F3A-G34 mutant (n = 1), receptor tyrosine kinase 1 (RTK1, n = 4), receptor tyrosine kinase 2 (classic) (RTK2, n = 2) or mesenchymal (n = 5) glioblastoma groups. Two tumors showed methylation profiles of normal brain tissue due to low tumor cell content. While histological grading (WHO grade IV vs. WHO grade II and III) was not prognostic, the molecular classification as classic/RTK2 or mesenchymal glioblastoma was associated with worse overall survival. Multivariate Cox regression analysis revealed MGMT promoter methylation as a positive prognostic factor. Taken together, DNA-based large-scale molecular profiling indicates that GC comprises a genetically and epigenetically heterogeneous group of diffuse gliomas that carry DNA methylation and copy number profiles closely matching the common molecularly defined glioma entities. These data support the removal of GC as a distinct glioma entity in the upcoming revision of the WHO classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A_IDH:

Astrocytoma IDH mutant

CIMP:

CpG island methylator phenotype

CNS:

Central nervous system

EGFR:

Epidermal growth factor receptor

GBM_G34:

Glioblastoma WHO grade IV H3F3A-G34 mutant subgroup

GBM_RTK1:

Glioblastoma WHO grade IV receptor tyrosine kinase 1 subgroup

GBM_RTK2:

Glioblastoma WHO grade IV receptor tyrosine kinase 2 (classic) subgroup

GBM_mes:

Glioblastoma WHO grade IV mesenchymal subgroup

GC:

Gliomatosis cerebri

H3F3A:

H3 histone, family 3A

IDH:

Isocitrate dehydrogenase

MGMT:

O6-Methylguanine DNA methyltransferase

mOS:

Median overall survival

MRI:

Magnetic resonance imaging

O_IDH:

Oligodendroglioma IDH mutant and 1p/19q codeleted

TP53:

Tumor protein p53

WHO:

World Health Organization

References

  1. Bady P, Sciuscio D, Diserens AC, Bloch J, van den Bent MJ, Marosi C et al (2012) MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 124:547–560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Network Cancer Genome Atlas Research, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    Article  Google Scholar 

  4. Desestret V, Ciccarino P, Ducray F, Crinière E, Boisselier B, Labussière M et al (2011) Prognostic stratification of gliomatosis cerebri by IDH1 R132H and INA expression. J Neurooncol 105:219–224

    Article  PubMed  CAS  Google Scholar 

  5. D’Urso OF, D’Urso PI, Marsigliante S (2009) Correlative analysis of gene expression profile and prognosis in patients with gliomatosis cerebri. Cancer 115:3749–3757

    Article  PubMed  Google Scholar 

  6. Fuller GN, Kros JM (2007) Gliomatosis cerebri. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer, Lyon, pp 50–52

  7. Glas M, Bähr O, Felsberg J, Rasch K, Wiewrodt D, Schabet M et al (2011) NOA-05 phase 2 trial of procarbazine and lomustine therapy in gliomatosis cerebri. Ann Neurol 70:445–453

    Article  PubMed  CAS  Google Scholar 

  8. Herrlinger U (2012) Gliomatosis cerebri. Handb Clin Neurol 105:507–515

    Article  PubMed  Google Scholar 

  9. Herrlinger U, Felsberg J, Küker W, Bornemann A, Plasswilm L, Knobbe CB et al (2002) Gliomatosis cerebri: molecular pathology and clinical course. Ann Neurol 52:390–399

    Article  PubMed  CAS  Google Scholar 

  10. Hovestadt V, Remke M, Kool M, Pietsch T, Northcott PA, Fischer R, Cavalli FM et al (2013) Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125:913–916

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaloshi G, Everhard S, Laigle-Donadey F, Marie Y, Navarro S, Mokhtari K et al (2008) Genetic markers predictive of chemosensitivity and outcome in gliomatosis cerebri. Neurology 70:590–595

    Article  PubMed  CAS  Google Scholar 

  12. Korshunov A, Ryzhova M, Hovestadt V, Bender S, Sturm D, Capper D et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129:669–678

    Article  PubMed  CAS  Google Scholar 

  13. Mawrin C, Kirches E, Schneider-Stock R, Boltze C, Vorwerk CK, von Mawrin A et al (2006) Alterations of cell cycle regulators in gliomatosis cerebri. J Neurooncol 72:115–122

    Article  Google Scholar 

  14. Mawrin C, Kirches E, Schneider-Stock R, Scherlach C, Vorwerk C, Von Deimling A et al (2003) Analysis of TP53 and PTEN in gliomatosis cerebri. Acta Neuropathol 105:529–536

    PubMed  CAS  Google Scholar 

  15. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  PubMed  CAS  Google Scholar 

  16. Reuss DE, Kratz A, Sahm F, Capper D, Schrimpf D, Koelsche C et al (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130:407–417

    Article  PubMed  CAS  Google Scholar 

  17. Reuss DE, Mamatjan Y, Schrimpf D, Capper D, Hovestadt V, Kratz A et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873

    Article  PubMed  CAS  Google Scholar 

  18. Seiz M, Tuettenberg J, Meyer J, Essig M, Schmieder K, Mawrin C et al (2010) Detection of IDH1 mutations in gliomatosis cerebri, but only in tumors with additional solid component: evidence for molecular subtypes. Acta Neuropathol 120:261–267

    Article  PubMed  CAS  Google Scholar 

  19. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468

    Article  PubMed  CAS  Google Scholar 

  21. Taillibert S, Chodkiewicz C, Laigle-Donadey F, Napolitano M, Cartalat-Carel S, Sanson M (2006) Gliomatosis cerebri: a review of 296 cases from the ANOCEF database and the literature. J Neurooncol 76:201–205

    Article  PubMed  Google Scholar 

  22. Ware ML, Hirose Y, Scheithauer BW, Yeh RF, Mayo MC, Smith JS et al (2007) Genetic aberrations in gliomatosis cerebri. Neurosurgery 60:150–158

    Article  PubMed  Google Scholar 

  23. Wiestler B, Capper D, Sill M, Jones DT, Hovestadt V, Sturm D et al (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128:561–571

    Article  PubMed  CAS  Google Scholar 

  24. Wiestler B, Capper D, Hovestadt V, Sill M, Jones DT, Hartmann C et al (2014) Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial. Neuro Oncol 16:1630–1638

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Cancer Research Center Genomics and Proteomics Core Facility (DKFZ GPCF) and Britta Friedensdorf, Düsseldorf, for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Herrlinger.

Ethics declarations

Funding

This study was supported by the German Cancer Consortium (DKTK) joint funding project ‘Next Generation Molecular Diagnostics of Malignant Gliomas’.

Conflict of interest

UH has received advisory board honoraria from Roche, Mundipharma and Novocure, speakers honoraria from Roche, Medac and Mundipharma, travel reimbursement from Roche and Medac, grant support from Roche; MG has received advisory board honoraria from Roche and Mundipharma, speakers honoraria from Novartis, Roche and UCB, travel reimbursement from Roche and Medac; JPS has received advisory board honoraria from Roche and Mundipharma, speakers honoraria and travel reimbursement from Medac and Roche, grant support from Merck; MW has received advisory board honoraria from Celldex, Immunocellular Therapeutics, Magforce, Isarna MSD, Merck, Northwest Biotherapeutics, Novocure, Pfizer, Roche and Teva, Grant support from Acceleron, Actelion, Alpinia Institute, Bayer, Isarna, MSD, Merck, Novocure, PIQUR and Roche. All other authors do not have any conflict of interest.

Additional information

U. Herrlinger, D. T. W. Jones and M. Glas share first authorship.

M. Weller and G. Reifenberger share last authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrlinger, U., Jones, D.T.W., Glas, M. et al. Gliomatosis cerebri: no evidence for a separate brain tumor entity. Acta Neuropathol 131, 309–319 (2016). https://doi.org/10.1007/s00401-015-1495-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1495-z

Keywords

Navigation