Skip to main content

Advertisement

Log in

No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer’s disease brain

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Defective splicing of tau mRNA, promoting a shift between tau isoforms with (4R tau) and without (3R tau) exon 10, is believed to be a pathological consequence of certain tau mutations causing frontotemporal dementia. By assessing protein and mRNA levels of 4R tau and 3R tau in 27 AD and 20 control temporal cortex, we investigated whether altered tau splicing is a feature also in Alzheimer’s disease (AD). However, apart from an expected increase of sarcosyl-insoluble tau in AD, there were no significant differences between the groups. Next, by laser-capture microscopy and quantitative PCR, we separately analyzed CA1 hippocampal neurons with and without neurofibrillary pathology from six of the AD and seven of the control brains. No statistically significant differences in 4R tau/3R tau mRNA were found between the different subgroups. Moreover, we confirmed the absence of significant ratio differences in a second data set with laser-captured entorhinal cortex neurons from four AD and four control brains. Finally, the 4R tau/3R tau ratio in CA1 neurons was roughly half of the ratio in temporal cortex, indicating region-specific differences in tau mRNA splicing. In conclusion, this study indicated region-specific and possibly cell-type-specific tau splicing but did not lend any support to overt changes in alternative splicing of tau exon 10 being an underlying factor in AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590

    Article  PubMed  CAS  Google Scholar 

  2. Augustinack J, Schneider A, Mandelkow E, Hyman B (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35

    Article  PubMed  CAS  Google Scholar 

  3. Boutajangout A, Boom A, Leroy K, Brion JP (2004) Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer’s disease. FEBS Lett 576:183–189

    Article  PubMed  CAS  Google Scholar 

  4. Buée L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9:681–693

    Article  PubMed  Google Scholar 

  5. Chambers CB, Lee JM, Troncoso JC, Reich S, Muma NA (1999) Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer’s disease. Ann Neurol 46:325–332

    Article  PubMed  CAS  Google Scholar 

  6. Connell JW, Rodriguez-Martin T, Gibb GM, Kahn NM, Grierson AJ, Hanger DP, Revesz T, Lantos PL, Anderton BH, Gallo JM (2005) Quantitative analysis of tau isoform transcripts in sporadic tauopathies. Brain Res Mol Brain Res 137:104–109

    Article  PubMed  CAS  Google Scholar 

  7. de Silva R, Lashley T, Gibb GM, Hanger D, Hope A, Reid A, Bandopadhyay R, Utton M, Strand C, Jowett T, Khan N, Anderton B, Wood N, Holton J, Revesz T, Lees A (2003) Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropath Appl Neurobiol 29:288–302

    Article  Google Scholar 

  8. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168

    Article  PubMed  CAS  Google Scholar 

  9. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    Article  PubMed  CAS  Google Scholar 

  10. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    PubMed  CAS  Google Scholar 

  11. Gomez-Isla T, Hollister R, West H, Mui S, Growdon J, Petersen R, Parisi J, Hyman B (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24

    Article  PubMed  CAS  Google Scholar 

  12. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  13. Hasegawa M, Smith MJ, Iijima M, Tabira T, Goedert M (1999) FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett 443:93–96

    Article  PubMed  CAS  Google Scholar 

  14. Herrmann M, Golombowski S, Krauchi K, Frey P, Mourton-Gilles C, Hulette C, Rosenberg C, Muller-Spahn F, Hock C (1999) ELISA-quantitation of phosphorylated tau protein in the Alzheimer’s disease brain. Eur Neurol 42:205–210

    Article  PubMed  CAS  Google Scholar 

  15. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    Article  PubMed  CAS  Google Scholar 

  16. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  17. Hyman B, Trojanowski J (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropath Exp Neurol 56:1095–1097

    Article  PubMed  CAS  Google Scholar 

  18. Hyman BT, Augustinack JC, Ingelsson M (2005) Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochim Biophys Acta 1739:150–157

    PubMed  CAS  Google Scholar 

  19. Ingelsson M, Froelich Fabre S, Volkmann I, Sundström E, Näslund J, Lannfelt L, Bogdanovic N (2001) Three microtubule-binding repeat tau (3R tau) are the major tau isoforms in Alzheimer neuropathology. In: The 35th conference for the society for Neuroscience, San Diego

  20. Ingelsson M, Fukumoto H, Newell K, Growdon JH, Hedley-Whyte TE, Albert MS, Frosch MP, Hyman BT, Irizarry MC (2004) Early Abeta accumulation and progressive synaptic loss, gliosis and tangle formation in AD brain. Neurology 62:925–931

    PubMed  CAS  Google Scholar 

  21. Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O’Brien TF, Kusakabe M, Steindler DA (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 156:333–344

    Article  PubMed  CAS  Google Scholar 

  22. Liu WK, Le T, Adamson J (2001) Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy. Ann Neurol 50:494–502

    Article  PubMed  CAS  Google Scholar 

  23. Mandelkow E-M, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24:1079–1085

    Article  PubMed  CAS  Google Scholar 

  24. McKhann G, Drachman D, Folstein M (1984) Clinical diagnosis of Alzheimer’s disease: report of NINCDS-ADRDA Work Group under the auspices of department of health and human services task forces on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  25. Mirra SS, Heyman A, McKeel D (1991) The consortium to establish a registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  26. Togo T, Akiyama H, Iseki E, Uchikado H, Kondo H, Ikeda K, Tsuchiya K, de Silva R, Lees A, Kosaka K (2005) Immunohistochemical study of tau accumulation in early stages of Alzheimer-type neurofibrillary lesions. Acta Neuropath 107:504–508

    Article  CAS  Google Scholar 

  27. Vandermeeren M, Mercken M, Vanmechelen E, Six J, van de Voorde A, Martin J-J, Cras P (1993) Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem 61:1828–1834

    PubMed  CAS  Google Scholar 

  28. Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjogren M, Andreasen N, Blennow K (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285:49–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH (P50 AG005134 and AG08487) and the Rubenstein Foundation. M.I. was sponsored by The Swedish Society of Medicine, The Swedish Alzheimer Foundation and the Swedish Research Council. RdeS was funded by the Reta Lila Weston Trust for Medical Research. We are also grateful to Karlotta Fitch for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ingelsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingelsson, M., Ramasamy, K., Cantuti-Castelvetri, I. et al. No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer’s disease brain. Acta Neuropathol 112, 439–449 (2006). https://doi.org/10.1007/s00401-006-0095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0095-3

Keywords

Navigation