Skip to main content
Log in

Determining polymer molecular weight distributions from rheological properties using the dual-constraint model

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Although multiple models now exist for predicting the linear viscoelasticity of a polydisperse linear polymer from its molecular weight distribution (MWD) and for inverting this process by predicting the MWD from the linear rheology, such inverse predictions do not yet exist for long-chain branched polymers. Here, we develop and test a method of inverting the dual-constraint model (Pattamaprom et al., Rheol Acta 39:517–531, 2000; Pattamaprom and Larson, Macromolecules 34:5229–5237, 2001), a model that is able to predict the linear rheology of polydisperse linear and star-branched polymers. As a first step, we apply this method only to polydisperse linear polymers, by comparing the inverse predictions of the dual-constraint model to experimental GPC traces. We show that these predictions are usually at least as good, or better than, the inverse predictions obtained from the Doi–Edwards double-reptation model (Tsenoglou, ACS Polym Prepr 28:185–186, 1987; des Cloizeaux, J Europhys Lett 5:437–442, 1988; Mead, J Rheol 38:1797–1827, 1994), which we take as a “benchmark”—an acceptable invertible model for polydisperse linear polymers. By changing the predefined type of molecular weight distribution from log normal, which has two fitting parameters, to GEX, which has three parameters, the predictions of the dual-constraint model are slightly improved. These results suggest that models that are complex enough to predict branched polymer rheology can be inverted, at least for linear polymers, to obtain molecular weight distribution. Further work will be required to invert such models to allow prediction of the molecular weight distribution of branched polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderssen RS, Mead DW, Driscoll JJ (1997) On the recovery of molecular weight functionals from the double reptation model. J Non-Newtonian Fluid Mech 68:291–301

    Article  CAS  Google Scholar 

  • Ball RC, McLeish TCB (1989) Dynamic dilution and the viscosity of star polymer melts. Macromolecules 22:1911–1913

    Article  CAS  Google Scholar 

  • Baumgaertel M, De Rosa ME, Machado J, Masse M, Winter HH (1992) The relaxation time spectrum of nearly monodisperse polybutadiene melts. Rheol Acta 31:75–82

    Article  CAS  Google Scholar 

  • Carrot C, Guillet J (1997) From dynamic moduli to molecular weight distribution: a study of various polydisperse linear polymers. J Rheol 41:1203–1220

    Article  CAS  Google Scholar 

  • Carrot C, Revenu P, Guillet J (1996) Rheological behavior of degraded polypropylene melts: from MWD to dynamic moduli. J Appl Polym Sci 61:1887–1897

    Article  CAS  Google Scholar 

  • Cocchini F, Nobile MR (2003) Constrained inversion of rheological data to molecular weight distribution for polymer melts. Rheol Acta 42:232–242

    CAS  Google Scholar 

  • Das C, Inkson NJ, Read DJ, Kelmanson MA, McLeish TCB (2006) Computational linear rheology of general branch-on-branch polymers. J Rheol 50:207–234

    Article  CAS  Google Scholar 

  • Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. Van Nostrand, New York

    Google Scholar 

  • des Cloizeaux J (1988) Double reptation vs. simple reptation in polymer melts. J Europhys Lett 5:437–442

    Article  CAS  Google Scholar 

  • des Cloizeaux J (1990) Relaxation and viscosity anomaly of melts made of entangled polymers. Time dependent reptation. Macromolecules 23:4678–4687

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems, part 1–3. J Chem Soc, Faraday Trans II 74:1789–1832

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems, part 4—rheological properties. J Chem Soc, Faraday Trans II 75:38–54

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macormolecules 27:4639–4647

    Article  CAS  Google Scholar 

  • Gloor WE (1978) The numerical evaluation of parameters in distribution functions polymer from their molecular weight distribution. J Appl Poly Sci 22:1177–1182

    Article  CAS  Google Scholar 

  • Gloor WE (1983) Extending the continuum of molecular weight distribution based on the generalized exponential (GEX) distribution. J Appl Poly Sci 22:1177–1182

    Article  Google Scholar 

  • Larson RG, Sridhar T, Leal LG, McKinley GH (2003) Definitions of entanglement spacing and time constants in the tube model. J Rheol 47(3):809–818

    Article  CAS  Google Scholar 

  • Léonardi F, Majesté JC, Allal A, Marin GJ (2000) A critical review of rheological models based on the double reptation concept: the effect of a polydisperse environment. J Rheol 44:675

    Article  Google Scholar 

  • Léonardi F, Allal A, Marin G (2002) Molecular weight distribution from viscoelastic data: the importance of tube renewal and rouse mode. J Rheol 46(1):209–224

    Article  Google Scholar 

  • Likhtman AE, McLeish TCB (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343

    Article  CAS  Google Scholar 

  • Maier D, Eckstein A, Friedrich C, Honerkamp J (1998) Evaluation of models combining rheological data with the molecular weight distribution. J Rheol 42:1153–1173

    Article  CAS  Google Scholar 

  • Mead DW (1994) Determination of molecular weight distributions of linear flexible polymers from linear viscoelastic material functions. J Rheol 38:1797–1827

    Article  CAS  Google Scholar 

  • Milner ST, McLeish TCB (1997) Parameter-free theory for stress relaxation in star polymer melts. Macromolecules 30:2159–2166

    Article  CAS  Google Scholar 

  • Milner ST, McLeish TCB, Young RN, Hakiki A, Johnson JM (1998) Dynamic dilution, constraint-release, and star-linear blends. Macromolecules 31:9345–9353

    Article  CAS  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  • Nobile MR, Cocchini F, Lawler JV (1996) On the stability of molecular weight distributions as computed from the flow curves of polymer melts. J Rheol 40:363–382

    Article  CAS  Google Scholar 

  • Park SJ, Shanbhag S, Larson RG (2005) A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching. Rheol Acta 44:319–330

    Article  CAS  Google Scholar 

  • Pattamaprom C, Larson RG (2001) Constraint release effects in monodisperse and bidisperse polystyrenes in fast transient shearing flows. Macromolecules 34:5229–5237

    Article  CAS  Google Scholar 

  • Pattamaprom C, Larson RG, van Dykes TJ (2000) Quantitative predictions of linear viscoelastic rheological properties of entangled polymers. Rheol Acta 39:517–531

    Article  CAS  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd edn. Cambridge University Press, USA

    Google Scholar 

  • Struglinski MJ, Graessley GG, Fetters L (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18:2630–2643

    Article  CAS  Google Scholar 

  • Thimm W, Friedrich C, Marth M, Honerkamp J (2000) On the Rouse spectrum and the determination of the molecular weight distribution from rheological data. J Rheol 44:429–438

    Article  CAS  Google Scholar 

  • Tsenoglou C (1987) Viscoelasticity of binary homopolymer blends. ACS Polym Prepr 28:185–186

    CAS  Google Scholar 

  • Tuminello WH (1986) Molecular weight and molecular weight distribution from dynamic measurements of polymer melts. Pol Eng Sci 26:1339–1347

    Article  CAS  Google Scholar 

  • van Ruymbeke E, Keunings R, Stéphenne V, Hagenaars A, Bailly C (2002a) Evaluation of reptation models for predicting the linear viscoelastic properties of entangled linear polymers. Macromolecules 35:2689–2699

    Article  Google Scholar 

  • van Ruymbeke E, Keunings R, Bailly C (2002b) Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data. J Non-Newtonian Fluid Mech 105:153–175

    Article  Google Scholar 

  • Viovy JL, Rubinstein M, Colby RH (1991) Constraint release in polymer melts: tube reorganization versus tube dilution. Macromolecules 24:3587–3596

    Article  CAS  Google Scholar 

  • Wasserman SH (1995) Calculating the molecular weight distribution from linear viscoelastic response of polymer melts. J Rheol 39:601–625

    Article  CAS  Google Scholar 

  • Wasserman SH, Graessley WW (1992) Effects of polydispersity on linear viscoelasticity in entangled polymer melts. J Rheol 36:543–572

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support from Thailand research fund grant number TRG4580064. Evelyn van Ruymbeke and BASF research laboratory, especially Dr. Martin Laun, are deeply appreciated for their kind consideration in sharing experimental data. R.G. Larson was supported by the NSF, grant numbers DMR-0096688 and DMR-0604965. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cattaleeya Pattamaprom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattamaprom, C., Larson, R.G. & Sirivat, A. Determining polymer molecular weight distributions from rheological properties using the dual-constraint model. Rheol Acta 47, 689–700 (2008). https://doi.org/10.1007/s00397-008-0264-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0264-5

Keywords

Navigation