Skip to main content
Log in

Contact angle hysteresis: surface morphology effects

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Irradiation of metallic surfaces using ultra-short pulse laser results in a dual-scale structure. While metallic surfaces are superhydrophilic immediately after laser irradiation, prolonged exposure to air renders surfaces superhydrophobic due to surface reactions and deposition of carbonaceous materials onto the surface. In this work, we have fabricated a paraboloid microstructure, which is analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle and contact angle hysteresis. The effects of the geometrical details on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A p :

Pillar area

A v :

Area between pillars

D :

Base diameter of paraboloid

F :

Gibbs free energy per unit length of contact line

f sl :

Fraction of projected solid area in contact with liquid

H :

Pillar height

H 1 :

Penetrated liquid height in the composite state

L i :

Droplet width at a given (point) state

l la :

Arc length of droplet in contact with air

l ls :

Arc length difference of liquid–solid contact line for two given states

R :

Radius of curvature of the droplet profile

r f :

Roughness factor

P :

Base-to-base distance of pillars (pitch)

α :

Slope angle

γ la :

Liquid–air interfacial tension

γ sa :

Solid–air interfacial tension

γ sl :

Solid–liquid interfacial tension

θ app :

Apparent contact angle

θ CB :

Cassie–Baxter state contact angle

θ flat :

Intrinsic contact angle

θ i :

Apparent contact angle at a given ( point i ) state of the drop

θ w :

Wenzel state contact angle

References

  1. Gao L, McCarthy TJ (2009) Langmuir 25:14100

    Article  CAS  Google Scholar 

  2. Ma M, Hill RM (2006) J Curr Opin Colloid Interface Sci 11:193

    Article  CAS  Google Scholar 

  3. Liu B, He Y, Fan Y, Wang X (2006) Macromol Rapid Comm 27:1859

    Article  CAS  Google Scholar 

  4. Otten A, Herminghaus S (2004) Langmuir 20:2405

    Article  CAS  Google Scholar 

  5. Carre A, Mittal KL (2009) Superhydrophobic surfaces. VSP/Brill, Leiden

    Google Scholar 

  6. Groenendjik MNW (2008) Laser Tech J 3:44

    Article  Google Scholar 

  7. Goncalves G, Marques PAAP, Trinadade T, Neto CP, Gandini A (2008) J Colloid Interface Sci 324:42

    Article  CAS  Google Scholar 

  8. Balu B, Breedveld V, Hess DW (2008) Langmuir 24:4785

    Article  CAS  Google Scholar 

  9. Barthlott W, Neinhuis C (1997) Planta 202:1

    Article  CAS  Google Scholar 

  10. Johnson RE Jr, Dettre RH (1964) Adv Chem Ser 43:112

    Article  CAS  Google Scholar 

  11. Shuttleworth R, Bailey GLJ (1948) Discuss Faraday Soc 3:16

    Article  Google Scholar 

  12. Li W, Amirfazli A (2005) J Colloid Interface Sci 292:195

    Article  CAS  Google Scholar 

  13. Amirfazli A (2007) Adv Colloid Interface Sci 132:51

    Article  Google Scholar 

  14. Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V, Aurbach D (2008) Phys Chem Chem Phys 10:4056

    Article  CAS  Google Scholar 

  15. Bormashenko E, Pogreb R, Whyman G, Erlich M (2007) Langmuir 23:6501

    Article  CAS  Google Scholar 

  16. Jung YC, Bhushan B (2009) Langmuir 25:9208

    Article  CAS  Google Scholar 

  17. Liu B, Lange FF (2006) J Colloid Interface Sci 298:899

    Article  CAS  Google Scholar 

  18. Bormashenko E, Stein T, Whyman G, Bormashenko Y, Pogreb R (2006) Langmuir 22:9982

    Article  CAS  Google Scholar 

  19. Bormashenko E, Stein T, Whyman G, Pogreb R, Sutovsky S, Danoch Y, Shoham Y, Bormashenko Y, Sorokov B, Aurbach D (2008) J Adhes Sci Tech 22:379

    Article  CAS  Google Scholar 

  20. Marmur A (2008) Langmuir 24:7573

    Article  CAS  Google Scholar 

  21. Baldacchini T, Carey JE, Zhou M, Mazur E (2006) Langmuir 22:4917

    Article  CAS  Google Scholar 

  22. Zorba V, Persano L, Pisignano D, Athanassiou A, Stratakis E, Cingolani R, Tzanetakis P, Fotakis C (2006) Nanotechnology 17:3234

    Article  CAS  Google Scholar 

  23. Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis SH, Fotakis C (2008) Adv Mater 20:4049

    Article  CAS  Google Scholar 

  24. Barberoglou M, Zorba V, Stratakis E, Spanakis E, Tzanetakis P, Anastasiadis AH, Fotakis C (2009) Appl Surf Sci 255:5425

    Article  CAS  Google Scholar 

  25. Kietzig AM, Hatzikiriakos SG, Englezos P (2009) Langmuir 25:4821

    Article  CAS  Google Scholar 

  26. Kietzig AM, Hatzikiriakos SG, Kietzig PA-M, Mirvakili MN, Kamal S, Englezos P, Hatzikiriakos SG (2011) J Adhes SciTech 25:2789

    CAS  Google Scholar 

  27. Marmur A (2006) Soft Matter 2:12

    Article  CAS  Google Scholar 

  28. Krasovitski B, Marmur A (2005) Langmuir 21:3881

    Article  CAS  Google Scholar 

  29. Lafuma A, Que’re’ D (2003) Nat Mater 2:457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas G. Hatzikiriakos.

Additional information

This article is part of the Topical Collection on Contact Angle Hysteresis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi, S., Englezos, P. & Hatzikiriakos, S.G. Contact angle hysteresis: surface morphology effects. Colloid Polym Sci 291, 317–328 (2013). https://doi.org/10.1007/s00396-012-2746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2746-3

Keywords

Navigation