Skip to main content

Advertisement

Log in

Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

The use of rosemary (Rosmarinus officinalis) leaves and their constituents as a source of dietary antioxidants and flavoring agents is continuously growing. Carnosol and carnosic acid, two major components of rosemary extracts, have shown activity for cancer prevention and therapy.

Aim of the study

In this study, we investigate the cytotoxic and anti-angiogenic activities of carnosol and carnosic acid, in order to get further insight into their mechanism of action.

Results

Our results demonstrate that the mentioned diterpenes inhibit certain functions of endothelial cells, namely, differentiation, proliferation, migration and proteolytic capability. Our data indicate that their growth inhibitory effect, exerted on proliferative endothelial and tumor cells, could be due to, at least in part, an induction of apoptosis. Inhibition of the mentioned essential steps of in vitro angiogenesis agrees with the observed inhibition of the in vivo angiogenesis, substantiated by using the chick chorioallantoic membrane assay.

Conclusions

The anti-angiogenic activity of carnosol and carnosic acid could contribute to the chemopreventive, antitumoral and antimetastatic activities of rosemary extracts and suggests their potential in the treatment of other angiogenesis-related malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Commission Directive (2010) 2010/67/EU of 20 October 2010 amending Directive 2008/84/EC laying down specific purity criteria on food additives other than colours and sweeteners. Off J Eur Union L277:17–26

    Google Scholar 

  2. Commission Directive (2010) 2010/69/EU of 22 October 2010 amending the Annexes to European Parliament and Council Directive 95/2/EC on food additives other than colours and sweeteners. Off J Eur Union L279:22–31

    Google Scholar 

  3. Moss M, Cook J, Wesnes K, Duckett P (2003) Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci 113:15–38

    Article  Google Scholar 

  4. Kelsey NA, Wilkins HM, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15:7792–7814

    Article  CAS  Google Scholar 

  5. Yesil Celiktas O, Hames Kocabas EE, Bedir E, Vardar Sukan F, Ozekc T, Baser KHC (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem 100:553–559

    Article  Google Scholar 

  6. Moreno S, Scheyer T, Romano CS, Vojnov AA (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 40:223–231

    Article  CAS  Google Scholar 

  7. Takaki I, Bersani-Amado LE, Vendruscolo A, Sartoretto SM, Diniz SP, Bersani-Amado CA, Cuman RK (2008) Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J Med Food 11:741–746

    Article  CAS  Google Scholar 

  8. Vitaglione P, Morisco F, Caporaso N, Fogliano V (2004) Dietary antioxidant compounds and liver health. Crit Rev Food Sci Nutr 44:575–586

    Article  CAS  Google Scholar 

  9. Huang MT, Ho CT, Wang ZY, Ferraro T, Lou YR, Stauber K et al (1994) Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res 54:701–708

    CAS  Google Scholar 

  10. Cheung S, Tai J (2007) Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol Rep 17:1525–1531

    Google Scholar 

  11. Russo A, Lombardo L, Troncoso N, Garbarino J, Cardile V (2009) Rosmarinus officinalis extract inhibits human melanoma cell growth. Nat Prod Commun 4:1707–1710

    CAS  Google Scholar 

  12. Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F (2010) Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum Nutr 65:158–163

    Article  CAS  Google Scholar 

  13. Yi W, Wetzstein HY (2011) Anti-tumorigenic activity of five culinary and medicinal herbs grown under greenhouse conditions and their combination effects. J Sci Food Agric 91:1849–1854

    Article  CAS  Google Scholar 

  14. Mulinacci N, Innocenti M, Bellumori M, Giaccherini C, Martini V, Michelozzi M (2011) Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: an HPLC/DAD/MS study. Talanta 85:167–176

    Article  CAS  Google Scholar 

  15. Aruoma OI, Halliwell B, Aeschbach R, Löligers J (1992) Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. Xenobiotica 22:257–268

    Article  CAS  Google Scholar 

  16. Poeckel D, Greiner C, Verhoff M, Rau O, Tausch L, Hörnig C et al (2008) Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochem Pharmacol 76:91–97

    Article  CAS  Google Scholar 

  17. Bai N, He K, Roller M, Lai CS, Shao X, Pan MH, Ho CT (2010) Flavonoids and phenolic compounds from Rosmarinus officinalis. J Agric Food Chem 58:5363–5367

    Article  CAS  Google Scholar 

  18. Bernardes WA, Lucarini R, Tozatti MG, Souza MG, Silva ML, Filho AA et al (2010) Antimicrobial activity of Rosmarinus officinalis against oral pathogens: relevance of carnosic acid and carnosol. Chem Biodivers 7:1835–1840

    Article  CAS  Google Scholar 

  19. Wang T, Takikawa Y, Satoh T, Yoshioka Y, Kosaka K, Tatemichi Y, Suzuki K (2011) Carnosic acid prevents obesity and hepatic steatosis in ob/ob mice. Hepatol Res 41:87–92

    Article  CAS  Google Scholar 

  20. Lee JJ, Jin YR, Lee JH, Yu JY, Han XH, Oh KW et al (2007) Antiplatelet activity of carnosic acid, a phenolic diterpene from Rosmarinus officinalis. Planta Med 73:121–127

    Article  CAS  Google Scholar 

  21. Nabekura T, Yamaki T, Hiroi T, Ueno K, Kitagawa S (2010) Inhibition of anticancer drug efflux transporter P-glycoprotein by rosemary phytochemicals. Pharmacol Res 61:259–263

    Article  CAS  Google Scholar 

  22. Yu YM, Lin CH, Chan HC, Tsai HD (2009) Carnosic acid reduces cytokine-induced adhesion molecules expression and monocyte adhesion to endothelial cells. Eur J Nutr 48:101–106

    Article  CAS  Google Scholar 

  23. Johnson JJ (2011) Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Lett 305:1–7

    Article  CAS  Google Scholar 

  24. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  Google Scholar 

  25. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  26. Quesada AR, Medina MA, Muñoz-Chápuli R, Ponce AL (2010) Do not say ever never more: the ins and outs of antiangiogenic therapies. Curr Pharm Des 16:3932–3957

    Article  CAS  Google Scholar 

  27. Quesada AR, Medina MA, Alba E (2007) Playing only one instrument may be not enough: limitations and future of the antiangiogenic treatment of cancer. Bioessays 29:1159–1168

    Article  CAS  Google Scholar 

  28. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  Google Scholar 

  29. Quesada AR, Muñoz-Chápuli R, Medina MA (2006) Anti-angiogenic drugs: from bench to clinical trials. Med Res Rev 26:483–530

    Article  CAS  Google Scholar 

  30. Rodríguez-Nieto S, González-Iriarte M, Carmona R, Muñoz-Chápuli R, Medina MA, Quesada AR (2002) Anti-angiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. FASEB J 16:261–263

    Google Scholar 

  31. Castro ME, González-Iriarte M, Barrero AF, Salvador-Tormo N, Muñoz-Chápuli R, Medina MA, Quesada AR (2004) Study of puupehenone and related compounds as inhibitors of angiogenesis. Int J Cancer 110:31–38

    Article  CAS  Google Scholar 

  32. Martínez-Poveda B, Quesada AR, Medina MA (2005) Hyperforin, a bio-active compound of St. John’s Wort, is a new inhibitor of angiogenesis targeting several key steps of the process. Int J Cancer 117:775–780

    Article  Google Scholar 

  33. Cárdenas C, Quesada AR, Medina MA (2006) Evaluation of the anti-angiogenic effect of aloe-emodin. Cell Mol Life Sci 63:3083–3089

    Article  Google Scholar 

  34. García-Caballero M, Marí-Beffa M, Medina MÁ, Quesada AR (2011) Dimethylfumarate inhibits angiogenesis in vitro and in vivo: a possible role for its antipsoriatic effect? J Invest Dermatol 131:1347–1355

    Article  Google Scholar 

  35. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598

    Article  CAS  Google Scholar 

  36. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  37. Syed DN, Khan N, Afaq F, Mukhtar H (2007) Chemoprevention of prostate cancer through dietary agents: progress and promise. Cancer Epidemiol Biomarkers Prev 16:2193–2203

    Article  CAS  Google Scholar 

  38. Johnson JJ, Syed DN, Heren CR, Suh Y, Adhami VM, Mukhtar H (2008) Carnosol, a dietary diterpene, displays growth inhibitory effects in human prostate cancer PC3 cells leading to G2-phase cell cycle arrest and targets the 5′-AMP-activated protein kinase (AMPK) pathway. Pharm Res 25:2125–2134

    Article  CAS  Google Scholar 

  39. Pan MH, Lai CS, Wu JC, Ho CT (2011) Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol Nutr Food Res 55:32–45

    Article  CAS  Google Scholar 

  40. Fresco P, Borges F, Diniz C, Marques MP (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26:747–766

    Article  CAS  Google Scholar 

  41. Dörrie J, Sapala K, Zunino SJ (2001) Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. Cancer Lett 170:33–39

    Article  Google Scholar 

  42. Pesakhov S, Khanin M, Studzinski GP, Danilenko M (2010) Distinct combinatorial effects of the plant polyphenols curcumin, carnosic acid, and silibinin on proliferation and apoptosis in acute myeloid leukemia cells. Nutr Cancer 62:811–824

    Article  CAS  Google Scholar 

  43. Bröker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162

    Article  Google Scholar 

  44. Constantinou C, Papas KA, Constantinou AI (2009) Caspase-independent pathways of programmed cell death: the unraveling of new targets of cancer therapy? Curr Cancer Drug Targets 9:717–728

    Article  CAS  Google Scholar 

  45. Martínez-Poveda B, Muñoz-Chápuli R, Rodríguez-Nieto S, Quintela JM, Fernández A, Medina MA, Quesada AR (2007) IB05204, a dichloropyridodithienotriazine, inhibits angiogenesis in vitro and in vivo. Mol Cancer Ther 6:2675–2685

    Article  Google Scholar 

  46. Cárdenas C, Quesada AR, Medina MA (2004) Effects of ursolic acid on different steps of the angiogenic process. Biochem Biophys Res Commun 320:402–408

    Article  Google Scholar 

  47. Huang SS, Zheng RL (2006) Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett 239:271–280

    Article  CAS  Google Scholar 

  48. Kim JH, Lee BJ, Kim JH, Yu YS, Kim MY, Kim KW (2009) Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21(WAF1) expression. Eur J Pharmacol 615:150–154

    Article  CAS  Google Scholar 

  49. Muñoz-Chápuli R, Quesada AR, Medina MA (2004) Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 61:2224–2243

    Article  Google Scholar 

  50. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  Google Scholar 

  51. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G et al (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA 97:3884–3889

    Article  CAS  Google Scholar 

  52. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051

    CAS  Google Scholar 

  53. Philip S, Kundu GC (2003) Osteopontin induces nuclear factor kappaB-mediated promatrix metalloproteinase-2 activation through I kappa B alpha/IKK signalling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. J Biol Chem 278:14487–14497

    Article  CAS  Google Scholar 

  54. Elkin M, Miao HQ, Nagler A, Aingorn E, Reich R, Hemo I et al (2000) Halofuginone: a potent inhibitor of critical steps in angiogenesis progression. FASEB J 14:2477–2485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Melissa García is recipient of a predoctoral FPU grant from the Spanish Ministry of Science and Innovation. Authors are indebted to Ramón Muñoz-Chápuli for his helpful advices in the CAM assay and to Cristina Zafra for her preliminary works with rosemary compounds. This work was supported by grants PS09/02216 and TRACE PT2008-0145 (Spanish Ministry of Science and Innovation, ISCIII and FEDER), Fundación Ramón Areces and PIE CTS-3759 (Andalusian Government and FEDER). The “CIBER de Enfermedades Raras” is an initiative from the ISCIII (Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana R. Quesada.

Additional information

Auxiliadora López-Jiménez and Melissa García-Caballero contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Methods. (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Jiménez, A., García-Caballero, M., Medina, M.Á. et al. Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. Eur J Nutr 52, 85–95 (2013). https://doi.org/10.1007/s00394-011-0289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0289-x

Keywords

Navigation