Skip to main content

Advertisement

Log in

Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Internal variability of the Asian monsoon system and the relationship amongst its sub-systems, the Indian and East Asian Summer Monsoon, are not sufficiently understood to predict its responses to a future warming climate. Past environmental variability is recorded in Palaeoclimate proxy data. In the Asian monsoon domain many records are available, e.g. from stalagmites, tree-rings or sediment cores. They have to be interpreted in the context of each other, but visual comparison is insufficient. Heterogeneous growth rates lead to uneven temporal sampling. Therefore, computing correlation values is difficult because standard methods require co-eval observation times, and sampling-dependent bias effects may occur. Climate networks are tools to extract system dynamics from observed time series, and to investigate Earth system dynamics in a spatio-temporal context. We establish paleoclimate networks to compare paleoclimate records within a spatially extended domain. Our approach is based on adapted linear and nonlinear association measures that are more efficient than interpolation-based measures in the presence of inter-sampling time variability. Based on this new method we investigate Asian Summer Monsoon dynamics for the late Holocene, focusing on the Medieval Warm Period (MWP), the Little Ice Age (LIA), and the recent period of warming in East Asia. We find a strong Indian Summer Monsoon (ISM) influence on the East Asian Summer Monsoon during the MWP. During the cold LIA, the ISM circulation was weaker and did not extend as far east. The most recent period of warming yields network results that could indicate a currently ongoing transition phase towards a stronger ISM penetration into China. We find that we could not have come to these conclusions using visual comparison of the data and conclude that paleoclimate networks have great potential to study the variability of climate subsystems in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anchukaitis KJ, Evans MN, Kaplan A, Vaganov EA, Hughes MK, Grissino-Mayer HD, Cane MA (2006) Forward modeling of regional scale tree-ring patterns in the southeastern United States and the recent influence of summer drought. Geophys Res Lett 33(4):2–5. doi:10.1029/2005GL025050

    Article  Google Scholar 

  • Babu P, Stoica P (2010) Spectral analysis of nonuniformly sampled data—a review. Digit Signal Process 20(2):359–378. doi:10.1016/j.dsp.2009.06.019

    Article  Google Scholar 

  • Berkelhammer M, Sinha A, Mudelsee M, Cheng H, Edwards RL, Cannariato K (2010) Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet Sci Lett 290(1–2):166–172. doi:10.1016/j.epsl.2009.12.017

    Article  Google Scholar 

  • Borgaonkar H, Pant G, Rupa Kumar K (1994) Dendroclimatic reconstruction of summer precipitation at Srinagar, Kashmir, India, since the late-eighteenth century. The Holocene 4(3):299–306. doi:10.1177/095968369400400309

    Article  Google Scholar 

  • Borgaonkar H, Sikder A, Ram S, Pant G (2010) El Niño and related monsoon drought signals in 523-year-long ring width records of teak (Tectona grandis L.F.) trees from south India. Palaeogeogr Palaeoclimatol Palaeoecol 285(1–2):74–84. doi:10.1016/j.palaeo.2009.10.026

    Article  Google Scholar 

  • Breitenbach SFM, Adkins JF, Meyer H, Marwan N, Kumar KK, Haug GH (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet Sci Lett 292(1–2):212–220. doi:10.1016/j.epsl.2010.01.038

    Article  Google Scholar 

  • Breitenbach SFM, Rehfeld K, Goswami B, Baldini JUL, Ridley HE, Kennett D, Prufer K, Aquino VV, Asmerom Y, Polyak VJ, Cheng H, Kurths J, Marwan N (2012) Constructing proxy-record age models (Copra). Clim Past Discuss 8:1–40. doi:10.5194/cpd-8-1-2012

    Article  Google Scholar 

  • Buckley BM, Anchukaitis KJ, Penny D, Fletcher R, Cook ER, Sano M, Nam LC, Wichienkeeo A, Minh TT, Hong TM (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA 107(15):6748–6752. doi:10.1073/pnas.0910827107

    Google Scholar 

  • Cai Y, Tan L, Cheng H, An Z, Edwards RL, Kelly MJ, Kong X, Wang X (2010) The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett 291(1–4):21–31. doi:10.1016/j.epsl.2009.12.039

    Article  Google Scholar 

  • Chatfield C (2004) The analysis of time series: an introduction, 6th edn. CRC Press, Florida, USA

    Google Scholar 

  • Cheng H, Zhang PZ, Spötl C, Edwards RL, Cai YJ, Zhang DZ, Sang WC, Tan M, An ZS (2012) The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys Res Lett 39(1):1–5. doi:10.1029/2011GL050202

    Article  Google Scholar 

  • Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science (New York, NY) 328(5977):486–489. doi:10.1126/science.1185188

    Article  Google Scholar 

  • Dionisio A, Menezes R, Mendes DA (2004) Mutual information: a measure of dependency for nonlinear time series. Phys A Stat Mech Appl 344(1–2):326–329. doi:10.1016/j.physa.2004.06.144

    Article  Google Scholar 

  • Donges JF, Schultz HC, Marwan N, Zou Y, Kurths J (2011) Investigating the topology of interacting networks. Eur Phys J B 84:635–651. doi:10.1140/epjb/e2011-10795-8

    Article  Google Scholar 

  • Donges JF, Zou Y, Marwan N, Kurths J (2009) Complex networks in climate dynamics. Eur Phys J Spec Top 174:157–179. doi:10.1140/epjst/e2009-01098-2

    Article  Google Scholar 

  • Donges JF, Zou Y, Marwan N, Kurths J (2009) The backbone of the climate network. EPL (Europhys Lett) 87(4):48,007. doi:10.1209/0295-5075/87/48007

    Google Scholar 

  • Gadgil S (2003) The Indian Monsoon and its variability. Annu Rev Earth Planet Sci 31(1):429–467. doi:10.1146/annurev.earth.31.100901.141251

    Article  Google Scholar 

  • Ge-Li W, Tsonis AA (2009) A preliminary investigation on the topology of Chinese climate networks. Chin Phys B 18(11):5091–5106

    Article  Google Scholar 

  • Gozolchiani A, Havlin S, Yamasaki K (2011) Emergence of El Niño as an autonomous component in the climate network. Phys Rev Lett 107(14):1–5. doi:10.1103/PhysRevLett.107.148501

    Article  Google Scholar 

  • Gupta AK (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys Res Lett 32(17):2–5. doi:10.1029/2005GL022685

    Article  Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421(6921):354–357. doi:10.1038/nature01340

    Article  Google Scholar 

  • Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25(1–2):163–178. doi:10.1016/j.quascirev.2005.02.006

    Article  Google Scholar 

  • Hong Y, Hong B, Lin Q, Zhu Y, Shibata Y, Hirota M, Uchida M, Leng X, Jiang H, Xu H, Wang H, Yi L (2003) Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sci Lett 211(3–4):371–380. doi:10.1016/S0012-821X(03)00207-3

    Article  Google Scholar 

  • Hu C, Henderson G, Huang J, Xie S, Sun Y, Johnson K (2008) Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett 266(3–4):221–232. doi:10.1016/j.epsl.2007.10.015

    Article  Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science (New York, NY) 292(5517):662–667. doi:10.1126/science.1059126

    Article  Google Scholar 

  • Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6):1–16. doi:10.1103/PhysRevE.69.066138

    Article  Google Scholar 

  • Kumar KK, Kamala K, Rajagopalan B, Hoerling MP, Eischeid JK, Patwardhan SK, Srinivasan G, Goswami BN, Nemani R (2010) The once and future pulse of Indian monsoonal climate. Clim Dyn 36(11–12):2159–2170. doi:10.1007/s00382-010-0974-0

    Google Scholar 

  • Ma ZB, Cheng H, Tan M, Edwards RL, Li HC, You CF, Duan WH, Wang X, Kelly MJ (2012) Timing and structure of the Younger Dryas event in northern China. Quat Sci Rev 41:83–93. doi:10.1016/j.quascirev.2012.03.006

    Article  Google Scholar 

  • Malik N, Bookhagen B, Marwan N, Kurths J (2011) Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim Dyn. doi:10.1007/s00382-011-1156-4

  • Malik N, Marwan N, Kurths J (2010) Spatial structures and directionalities in Monsoonal precipitation over South Asia. Nonlinear Process Geophys 17(5):371–381. doi:10.5194/npg-17-371-2010

    Article  Google Scholar 

  • Managave SR, Sheshshayee MS, Bhattacharyya A, Ramesh R (2010) Intra-annual variations of teak cellulose δ18O in Kerala, India: implications to the reconstruction of past summer and winter monsoon rains. Clim Dyn 37(3–4):555–567. doi:10.1007/s00382-010-0917-9

    Google Scholar 

  • Mann ME, Fuentes JD, Rutherford S (2012) Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nat Geosci 5(3):202–205. doi:10.1038/ngeo1394

    Article  Google Scholar 

  • May W (2010) The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-industrial times. Clim Dyn 37(9–10):1843–1868. doi:10.1007/s00382-010-0942-8

    Google Scholar 

  • Mayewski PA, Rohling EE, Curt Stager J, Karlén W, Maasch KA, David Meeker L, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62(3):243–255. doi:10.1016/j.yqres.2004.07.001

    Article  Google Scholar 

  • Nazareth D, Soofi E, Zhao H (2007) Visualizing attribute interdependencies using mutual information, hierarchical clustering, multidimensional scaling, and self-organizing maps. In: 2007 40th annual Hawaii international conference on system sciences (HICSS’07) pp 53–53. doi:10.1109/HICSS.2007.608

  • Osborn TJ, Briffa KR (2006) The spatial extent of 20th-century warmth in the context of the past 1200 years. Science (New York, NY) 311(5762):841–844. doi:10.1126/science.1120514

    Article  Google Scholar 

  • Pant G, Kumar KR, Borgaonkar H (1988) Statistical models of climate reconstruction using tree ring data. Proc Indian Natn Sci Acad 54(3):354–364

    Google Scholar 

  • Ramesh R, Tiwari M, Chakraborty S, Managave SR, Yadava MG, Sinha DK (2010) Retrieval of south Asian monsoon variation during the Holocene from natural climate archives. Curr Sci 99(12):1170–1786

    Google Scholar 

  • Rehfeld K, Marwan N, Heitzig J, Kurths J (2011) Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process Geophys 18(3):389–404. doi:10.5194/npg-18-389-2011

    Article  Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Article  Google Scholar 

  • Schewe J, Levermann A, Cheng H (2012) A critical humidity threshold for monsoon transitions. Clim Past 8(2):535–544. doi:10.5194/cp-8-535-2012

    Article  Google Scholar 

  • Schleser GH, Helle G, Lu A, Vos H (1999) Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat Sci Rev 18:927–943

    Article  Google Scholar 

  • Schulz M, Stattegger K (1997) SPECTRUM: spectral analysis of unevenly spaced paleoclimatic time series. Comput Geosci 23(9):929–945. doi:10.1016/S0098-3004(97)00087-3

    Article  Google Scholar 

  • Sheppard PR, Tarasov PE, Graumlich LJ, Heussner KU, Wagner M, Sterle H, Thompson LG (2004) Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China. Clim Dyn 23(7–8):869–881. doi:10.1007/s00382-004-0473-2

    Article  Google Scholar 

  • Shukla RP, Tripathi KC, Pandey AC, Das I (2011) Prediction of Indian summer monsoon rainfall using Niño indices: a neural network approach. Atmos Res 102(1–2):99–109. doi:10.1016/j.atmosres.2011.06.013

    Article  Google Scholar 

  • Singh J, Yadav RR, Wilmking M (2009) A 694-year tree-ring based rainfall reconstruction from Himachal Pradesh, India. Clim Dyn 33(7–8):1149–1158. doi:10.1007/s00382-009-0528-5

    Article  Google Scholar 

  • Sinha A, Cannariato KG, Stott LD, Cheng H, Edwards RL, Yadava MG, Ramesh R, Singh IB (2007) A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys Res Lett 34(16):1–5. doi:10.1029/2007GL030431

    Article  Google Scholar 

  • Sinha A, Stott L, Berkelhammer M, Cheng H, Edwards RL, Buckley B, Aldenderfer M, Mudelsee M (2011) A global context for megadroughts in monsoon Asia during the past millennium. Quat Sci Rev 30(1–2):47–62. doi:10.1016/j.quascirev.2010.10.005

    Article  Google Scholar 

  • Steinhaeuser K, Chawla NV, Ganguly AR (2010) Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Sci Technol. doi:10.1002/sam.10100

  • Stoica P, Sandgren N (2006) Spectral analysis of irregularly-sampled data: paralleling the regularly-sampled data approaches. Digit Signal Process 16(6):712–734. doi:10.1016/j.dsp.2006.08.012

    Article  Google Scholar 

  • Tan L, Cai Y, Cheng H, An Z, Edwards RL (2009) Summer monsoon precipitation variations in central China over the past 750years derived from a high-resolution absolute-dated stalagmite. Palaeogeogr Palaeoclimatol Palaeoecol 280(3–4):432–439. doi:10.1016/j.palaeo.2009.06.030

    Article  Google Scholar 

  • Tan M, Liu T (2003) Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys Res Lett 30(12). doi:10.1029/2003GL017352

  • Thompson LG, Yao T, Mosley-Thompson E, Davis M, Henderson K, Lin PN (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289:1998–2001

    Article  Google Scholar 

  • Trenberth KE (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32(14):2–5. doi:10.1029/2005GL022760

    Article  Google Scholar 

  • Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440(7088):1179–1182. doi:10.1038/nature04743

    Article  Google Scholar 

  • Tsonis AA, Swanson KL (2008) Topology and predictability of El Niño and La Niña networks. Phys Rev Lett 100:228,502. doi:10.1103/PhysRevLett.100.228502

    Article  Google Scholar 

  • Tsonis Aa, Swanson KL, Roebber PJ (2006) What do networks have to do with climate? Bull Am Meteorol Soc 87(5):585–595. doi:10.1175/BAMS-87-5-585

    Article  Google Scholar 

  • Von Rad U, Schaaf M, Michels K, Schulz H, Berger W, Sirocko F (1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, Northeastern Arabian Sea. Quat Res 51(1):39–53. doi:10.1006/qres.1998.2016

    Article  Google Scholar 

  • Wang P, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian Z, Kershaw P, Sarnthein M (2005) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24(5–6):595–629. doi:10.1016/j.quascirev.2004.10.002

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski Ca, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science (New York, NY) 308(5723):854–857. doi:10.1126/science.1106296

    Article  Google Scholar 

  • Wang Y, Liu X, Herzschuh U (2010) Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth Sci Rev 103(3–4):135–153. doi:10.1016/j.earscirev.2010.09.004

    Article  Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen CC, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science (New York, NY) 294(5550):2345–2348. doi:10.1126/science.1064618

    Article  Google Scholar 

  • Yadava M, Ramesh R, Pant G (2004) Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothem. The Holocene 14(4):517–524. doi:10.1191/0959683604hl728rp

    Article  Google Scholar 

  • Yamasaki K, Gozolchiani A, Havlin S (2009) Climate networks based on phase synchronization analysis track El-Niño. Progr Theor Phys Suppl 179(179):178–188. doi:10.1143/PTPS.179.178

    Article  Google Scholar 

  • Yi L, Yu H, Ge J, Lai Z, Xu X, Qin L, Peng S (2011) Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records. Clim Change 110(1–2):469–498. doi:10.1007/s10584-011-0052-6

    Google Scholar 

  • Zhang J, Chen F, Holmes Ja, Li H, Guo X, Wang J, Li S, Lü Y, Zhao Y, Qiang M (2011) Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis. Quat Sci Rev 30(15–16):1973–1987. doi:10.1016/j.quascirev.2011.04.023

    Article  Google Scholar 

  • Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu JJ, Tan M, Wang X, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322(5903):940–942. doi:10.1126/science.1163965

    Article  Google Scholar 

  • Zhou T, Li B, Man W, Zhang L, Zhang J (2011) A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. Chin Sci Bull 56(28–29):3028–3041. doi:10.1007/s11434-011-4641-6

    Article  Google Scholar 

  • Zou Y, Romano MC, Thiel M, Marwan N, Kurths J (2011) Inferring indirect coupling by means of recurrences. Int J Bifurcation Chaos 21(4):1099–1111. doi:10.1142/S0218127411029033

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the the German Federal Ministry of Education and Research (BMBF project PROGRESS, 03IS2191B), the German Science Foundation (DFG research group FOR 1380 “Himalaya: Modern and Past Climates (HIMPAC))”, the DFG graduate school GRK 1364 “Shaping Earth’s Surface in a Variable Environment”) and the Schweizer National Fond (SNF Sinergia grant CRSI22 132646/1). The authors would like to thank M. Yadava, R. Ramesh and H. Borgaonkar for providing data from India as well as G. Helle and M. Freund for helpful discussions about tree-ring data. Software to analyze irregularly sampled time series using the methods in this paper can be found on http://tocsy.pik-potsdam.de.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kira Rehfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehfeld, K., Marwan, N., Breitenbach, S.F.M. et al. Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Clim Dyn 41, 3–19 (2013). https://doi.org/10.1007/s00382-012-1448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1448-3

Keywords

Navigation