Skip to main content
Log in

Changes of amplitude integration electroencephalogram (aEEG) in different maturity preterm infant

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

With the improvement of perinatal care and neonatal intensive care technology in recent years, a preterm infant, especially with small gestational age and very low birth weight, survives more and more. At the same time, adverse neurodevelopmental prognosis caused by brain damage in preterm infant also increased significantly. Preterm infant brain injury has become the most important factor for early death and neurodevelopment of preterm infant.

Methods

Amplitude integration electroencephalogram (aEEG) has an important clinical value in the assessment of brain development in the maturity of preterm infant. With the application of a neonatal brain function monitor, we value the aEEG graphic continuity, periodicity, narrowband lower margin amplitude, and bandwidth score and analyze wide- and narrowband on the lower bounds of voltage and bandwidth.

Results

The graphics of preterm infant aEEG become mature with the growth of the gestational age (1). With the growth of corrected gestational age, the aEEG graphics of preterm infant has the following feature: lower bound voltage of narrowband rising and width narrowing of narrowband (2). Extrauterine life can speed up the maturation of aEEG graphics (3).

Conclusions

The aEEG technology is a noninvasive, operable, and simple analysis and suitable for application in the newborn intensive care unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Inder TE, Tao J, Neil JJ (2011) Common lesions in the newborn brain. Top Magn Reson Imaging 22:25

    Article  PubMed  Google Scholar 

  2. Deuber C, Terhaar M (2011) Hyperoxia in very preterm infants: a systematic review of the literature. J Perinatal Neonatal Nurs 25:268

    Google Scholar 

  3. Vasiljevic B, Maglajlic-Djukic S, Gojnic M, Stankovic S, Ignjatovic S, Lutovac D (2011) New insights into the pathogenesis of perinatal hypoxic-ischemic brain injury. Pediatr Int 53:454–462

    Article  CAS  PubMed  Google Scholar 

  4. ter Horst HJ, Verhagen EA, Keating P, Bos AF (2011) The relationship between electrocerebral activity and cerebral fractional tissue oxygen extraction in preterm infants. Pediatr Res 70:384–388

    Article  PubMed  Google Scholar 

  5. Hellström-Westas L (2006) Continuous electroencephalography monitoring of the preterm infant. Clin Perinatol 33:633

    Article  PubMed  Google Scholar 

  6. Niemarkt HJ, Jennekens W, Maartens IA, Wassenberg T, van Aken M, Katgert T, Kramer BW, Gavilanes AWD, Zimmermann LJ, Bambang Oetomo S (2011) Multi-channel amplitude-integrated EEG characteristics in preterm infants with a normal neurodevelopment at two years of corrected age. Early Hum Dev 88(4):209–216

    Article  PubMed  Google Scholar 

  7. Wusthoff C, Shellhaas R, Clancy R (2008) Limitations of single-channel EEG on the forehead for neonatal seizure detection. J Perinatol 29:237–242

    Article  PubMed  Google Scholar 

  8. Sisman J, Campbell DE, Brion LP (2005) Amplitude-integrated EEG in preterm infants: maturation of background pattern and amplitude voltage with postmenstrual age and gestational age. J Perinatol 25:391–396

    Article  PubMed  Google Scholar 

  9. Burdjalov VF, Baumgart S, Spitzer AR (2003) Cerebral function monitoring: a new scoring system for the evaluation of brain maturation in neonates. Pediatrics 112:855–861

    Article  PubMed  Google Scholar 

  10. Olischar M, Klebermass K, Kuhle S, Hulek M, Kohlhauser C, Rücklinger E, Pollak A, Weninger M (2004) Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks' gestational age. Pediatrics 113:e61–e66

    Article  PubMed  Google Scholar 

  11. Zhang D, Liu Y, Hou X, Zhou C, Luo Y, Ye D, Ding H (2011) Reference values for amplitude-integrated EEGS in infants from preterm to 3.5 months of age. Pediatrics 127:e1280–e1287

    Article  PubMed  Google Scholar 

  12. Shi Y, Cheng G, Shao X, Zhuang D, Liu D, Liu X, Wang J, Yao M, Wang Z, Zhou W (2011) Amplitude integrated electroencephalography characteristics of normal preterm newborns: a multicenter clinical study. Zhonghua Er Ke Za Zhi (Chin J Pediatr) 49:648

    Google Scholar 

  13. Toet MC, van der Meij W, de Vries LS, Uiterwaal CSPM, van Huffelen KC (2002) Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 109:772–779

    Article  PubMed  Google Scholar 

  14. Shellhaas RA, Gallagher PR, Clancy RR (2008) Assessment of neonatal electroencephalography (EEG) background by conventional and two amplitude-integrated EEG classification systems. J Pediatr 153:369–374

    Article  PubMed  Google Scholar 

  15. Scher MS, Johnson MW, Holditch-Davis D (2005) Cyclicity of neonatal sleep behaviors at 25 to 30 weeks' postconceptional age. Pediatr Res 57:879–882

    Article  PubMed  Google Scholar 

  16. Kuint J, Turgeman A, Torjman A, Maayan-Metzger A (2007) Characteristics of amplitude-integrated electroencephalogram in premature infants. J Child Neurol 22:277–281

    Article  PubMed  Google Scholar 

  17. Hellström-Westas L, Rosen I, De Vries L, Greisen G (2006) Amplitude-integrated EEG classification and interpretation in preterm and term infants. NeoReviews 7:e76–e87

    Article  Google Scholar 

  18. Klebermass K, Olischar M, Waldhoer T, Fuiko R, Pollak A, Weninger M (2011) Amplitude-integrated EEG pattern predicts further outcome in preterm infants. Pediatr Res 70:102–108

    Article  PubMed  Google Scholar 

  19. Soubasi V, Mitsakis K, Nakas CT, Petridou S, Sarafidis K, Griva M, Agakidou E, Drossou V (2009) The influence of extrauterine life on the aEEG maturation in normal preterm infants. Early Hum Dev 85:761–765

    Article  PubMed  Google Scholar 

  20. Foreman SW, Thorngate L, Burr RL, Thomas KA (2011) Electrode challenges in amplitude-integrated electroencephalography (aEEG): research application of a novel noninvasive measure of brain function in preterm infants. Biol Res Nurs 13:251–259

    Article  PubMed  Google Scholar 

  21. Fanaro S (2010) Which is the ideal target for preterm growth? Minerva pediatr 62:77

    CAS  PubMed  Google Scholar 

  22. Allen MC (2005) Assessment of gestational age and neuromaturation. Ment Retard Dev Disabil Res Rev 11:21–33

    Article  PubMed  Google Scholar 

  23. Wikström S, Pupp IH, Rosén I, Norman E, Fellman V, Ley D, Hellström-Westas L (2012) Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatrica 101(7):719–726

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China, No. 81241022 and the Natural Science Foundation of Beijing, No. 7122045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, H., Ding, Y., Yu, Y. et al. Changes of amplitude integration electroencephalogram (aEEG) in different maturity preterm infant. Childs Nerv Syst 29, 1169–1176 (2013). https://doi.org/10.1007/s00381-013-2060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2060-5

Keywords

Navigation