Skip to main content
Log in

Effect of boundary layer latent heating on MJO simulations

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A latent heating peak in the PBL was detected in a simulation by a global GCM that failed to reproduce Madden-Julian Oscillation (MJO). The latent heating peak in the PBL was generated by very shallow convection, which prevented moisture from being transported to the free troposphere. Large amount of moisture was therefore confined to the PBL, leading to a dry bias in the free atmosphere. Suffering from this dry bias, deep convection became lethargic, and MJO signals failed to occur. When the latent heating peak in the PBL was removed in another simulation, reasonable MJO signals, including the eastward propagation and the structure of its large-scale circulation, appeared. We therefore propose that the excessive latent heating peak in the PBL due to hyperactive shallow convection may be a reason for a lack of MJO signals in some simulations by other GCMs as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agudelo, P. A., C. D. Hoyos, P. J. Webster, and J. A. Curry, 2009: Application of a serial extended forecast experiment using the ECMWF model to interpret the predictive skill of tropical intraseasonal variability. Climate Dyn., 32, 855–872.

    Article  Google Scholar 

  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 2332–2354.

    Article  Google Scholar 

  • Bosilovich, M., S. Schubert, G. Kim, R. Gelaro, M. Rienecker, M. Suarez, and R. Todling, 2006: NASA’ s Modern Era Retrospective-analysis for Research and Applications (MERRA). US CLIVAR Variations, 4, 5–8.

    Google Scholar 

  • Chang, C. P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45, 1709–1720.

    Article  Google Scholar 

  • Cho, H. R., and D. Pendlebury, 1997: Wave CISK of equatorial waves and the vertical distribution of cumulus heating. J. Atmos. Sci., 54, 2429–2440.

    Article  Google Scholar 

  • Derbyshire, S. H., I. Beau, P. Bechtold, J. Y. Grandpeix, J. M. Piriou, J. L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 3055–3079.

    Article  Google Scholar 

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719.

    Article  Google Scholar 

  • Fu, X. H., and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden-Julian Oscillation: GCM experiments. J. Climate, 22, 3939–3959.

    Article  Google Scholar 

  • Gregory, D., R. Kershaw, and P. M. Inness, 1997: Parametrization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 1153–1183.

    Article  Google Scholar 

  • Hagos, S., L. R. Leung, and J. Dudhia, 2011: Thermodynamics of Madden-Julian Oscillation in a regional model with constrained moisture. J. Atmos. Sci., 68, 1974–1989.

    Article  Google Scholar 

  • Hartmann, D. L., H. H. Hendon, and R. A. Houze, 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113–121.

    Article  Google Scholar 

  • Hayashi, Y., 1982: Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60, 156–171.

    Google Scholar 

  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 1665–1683.

    Article  Google Scholar 

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842.

    Article  Google Scholar 

  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179–2196.

    Article  Google Scholar 

  • Inness, P. M., and D. Gregory, 1997: Aspects of the intraseasonal oscillation simulated by the Hadley Centre Atmosphere Model. Climate Dyn., 13, 441–458.

    Article  Google Scholar 

  • Jia, X. L., C. Y. Li, J. Ling, and C. D. Zhang, 2008: Impacts of a GCM’s resolution on MJO simulation. Adv. Atmos. Sci., 25, 139–156, doi: 10.1007/s00376-008-0319-9.

    Article  Google Scholar 

  • Jia, X. L., C. Y. Li, N. F. Zhou, and J. Ling, 2010: The MJO in an AGCM with three different cumulus parameterization schemes. Dyn. Atmos. Oceans, 49, 141–163.

    Article  Google Scholar 

  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397–2418.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Katsumata, M., R. H. Johnson, and P. E. Ciesielski, 2009: Observed synoptic-scale variability during the developing phase of an ISO over the Indian Ocean during MISMO. J. Atmos. Sci., 66, 3434–3448.

    Article  Google Scholar 

  • Kemball-Cook, S., B. Wang, and X. H. Fu, 2002: Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with an ocean model. J. Atmos. Sci., 59, 1433–1453.

    Article  Google Scholar 

  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian oscillation. J. Atmos. Sci., 62, 2790–2809.

    Article  Google Scholar 

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, doi: 10.1029/2008RG000266.

  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate Models. J. Climate, 22, 6413–6436.

    Article  Google Scholar 

  • Lau, K. M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. I. Basic theory. J. Atmos. Sci., 44, 950–972.

    Article  Google Scholar 

  • Lau, K. M., and D. E. Waliser, 2005: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer, 436pp.

  • Lee, M. I., I. S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM Simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963–992.

    Article  Google Scholar 

  • Li, C., 1985: Actions of summer monsoon troughs (ridges) and tropical cyclone over South Asia and the moving CISK mode. Scientia Sinica (B), 28, 1197–1206.

    Google Scholar 

  • Li, C. Y., X. L. Jia, J. Ling, W. Zhou, and C. D. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167–187.

    Article  Google Scholar 

  • Lin, J. L., B. Mapes, M. H. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden-Julian Oscillation. J. Atmos. Sci., 61, 296–309.

    Article  Google Scholar 

  • Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690.

    Article  Google Scholar 

  • Ling, J., and C. D. Zhang, 2011: Structural evolution in heating profiles of the MJO in global reanalyses and TRMM retrievals. J. Climate, 24, 825–842.

    Article  Google Scholar 

  • Ling, J., and C. D. Zhang, 2012: Diabatic heating profiles in recent global reanalyses. J. Climate, doi: 10.1175/JCLI-D-12-00384.1. (in press)

  • Ling, J., C. Y. Li, and X. L. Jia, 2009: Impacts of Cumulus momentum transport on MJO simulation. Adv. Atmos. Sci., 26, 864–876, doi: 10.1007/s00376-009-8016-8.

    Article  Google Scholar 

  • Liu, P., B. Wang, K. R. Sperber, T. Li, and G. A. Meehl, 2005: MJO in the NCAR CAM2 with the Tiedtke convective scheme. J. Climate, 18, 3007–3020.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in zonal wind in tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837.

    Article  Google Scholar 

  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 8417–8422.

    Article  Google Scholar 

  • Maloney, E. D., and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015–2034.

    Article  Google Scholar 

  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361–385.

    Article  Google Scholar 

  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515–1535.

    Article  Google Scholar 

  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Tech. Memo. No. 206, ECMWF, Reading, England, 41pp.

    Google Scholar 

  • Rajendran, K., R. S. Nanjundiah, and J. Srinivasan, 2002: Comparison of seasonal and intraseasonal variation of tropical climate in NCAR CCM2 GCM with two different cumulus schemes. Meteor. Atmos. Phys., 79, 57–86.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057.

    Article  Google Scholar 

  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 1341–1358.

    Article  Google Scholar 

  • Sherwood, S. C., and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127, 1777–1795.

    Article  Google Scholar 

  • Simmonds, I., 1985: Analysis of the “Spinup” of a general-circulation model. J. Geophys. Res.. 90, 5637–5660.

    Article  Google Scholar 

  • Slingo, J. M., 1980: A cloud parametrization scheme derived from gate data for use with a numerical model. Quart. J. Roy. Meteor. Soc., 106, 747–770.

    Article  Google Scholar 

  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899–927.

    Article  Google Scholar 

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325–357.

    Article  Google Scholar 

  • Sobel, A., E. Maloney, G. Bellon, and D. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. Journal of Advances in Modeling Earth Systems, 2(2), doi: 10.3894/JAMES.2010.2.2.

  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422–444.

    Article  Google Scholar 

  • Song, X. L., 2005: The evaluation analysis of two kinds of mass-flux cumulus parameterization in climate simulation. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 158pp. (in Chinese)

  • Sui, C. H., and K. M. Lau, 1989: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. 2. Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci., 46, 37–56.

    Article  Google Scholar 

  • Takahashi, M., 1987: A theory of the slow phase speed of the intraseasonal oscillation using the wave-Cisk. J. Meteor. Soc. Japan, 65, 43–49.

    Google Scholar 

  • Thayer-Calder, K., and D. A. Randall, 2009: The role of convective moistening in the Madden-Julian Oscillation. J. Atmos. Sci., 66, 3297–3312.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800.

    Article  Google Scholar 

  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529–545.

    Article  Google Scholar 

  • Wang, B., 1988: Dynamics of tropical low frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065.

    Article  Google Scholar 

  • Wang, B., 2005: Theories. Intraseasonal Variability in the Atmosphere-Ocean Climate System, K. M. Lau and D. E. Waliser, Eds., Springer-Verlag, 436pp.

  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies—1975–1985. Meteor. Atmos. Phys., 44, 43–61.

    Article  Google Scholar 

  • Wang, W. Q., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423–1457.

    Article  Google Scholar 

  • Wang, X., D. X. Wang, W. Zhou, and C. Y. Li, 2012: Interdecadal modulation of the influence of La Ni?na events on mei-yu rainfall over the Yangtze River valley. Adv. Atmos. Sci., 29, 157–168, doi: 10.1007/s00376-011-1021-8.

    Article  Google Scholar 

  • Webster, P., and R. Lukas, 1992: TOGA COARE: The coupled ocean-atmosphere response experiment. Bull. Amer. Meteor. Soc., 73, 1377–1416.

    Article  Google Scholar 

  • Woolnough, S. J., and Coauthors, 2010: Modelling convective processes during the suppressed phase of a Madden-Julian oscillation: Comparing single-column models with cloud-resolving models. Quart. J. Roy. Meteor. Soc., 136, 333–353.

    Google Scholar 

  • Wu, G., L. Hui, Z. Yucheng, and L. Weiping, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13, 1–18.

    Article  Google Scholar 

  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.

    Article  Google Scholar 

  • Zhang, C. D., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/2004RG000158.

    Article  Google Scholar 

  • Zhang, C. D., and S. M. Hagos, 2009: Bi-modal structure and variability of large-scale diabatic heating in the Tropics. J. Atmos. Sci., 66, 3621–3640.

    Article  Google Scholar 

  • Zhang, C. D., M. Dong, S. Gualdi, H. H. Hendon, E. D. Maloney, A. Marshall, K. R. Sperber, and W. Q. Wang, 2006: Simulations of the Madden-Julian Oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573–592.

    Article  Google Scholar 

  • Zhang, C. D., and Coauthors, 2010: MJO signals in latent heating: Results from TRMM retrievals. J. Atmos. Sci., 67, 3488–3508.

    Article  Google Scholar 

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general-circulation model. Atmos.-Ocean, 33, 407–446.

    Article  Google Scholar 

  • Zhang, G. J., and M. Q. Mu, 2005: Simulation of the Madden-Julian Oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme. J. Climate, 18, 4046–4064.

    Article  Google Scholar 

  • Zhang, G. J., and X. L. Song, 2009: Interaction of deep and shallow convection is key to Madden-Julian Oscillation simulation. Geophys. Res. Lett., 36, L09708, doi: 10.1029/2009GL037340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ling  (凌 健).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, J., Li, C., Zhou, W. et al. Effect of boundary layer latent heating on MJO simulations. Adv. Atmos. Sci. 30, 101–115 (2013). https://doi.org/10.1007/s00376-012-2031-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2031-x

Key words

Navigation