Skip to main content
Log in

Skeleton growing: an algorithm to extract a curve skeleton from a pseudonormal vector field

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A curve skeleton is used to represent a 3D object in many different applications. It is a 1D curve that captures topology of the 3D object. The proposed method extracts a curve skeleton from the vector field inside the 3D object. A vector at each voxel of the 3D object is calculated using a pseudonormal vector. By using such a calculation, the computation time is significantly reduced compared with using a typical potential field. A curve skeleton is then extracted from the pseudonormal vector field by using a skeleton-growing algorithm. The proposed algorithm uses high-curvature boundary voxels to search for a set of critical points and skeleton branches near high-curvature areas. The set of detected critical points is then used to grow a curve skeleton in the next step. All parameters of our algorithms are calculated from the 3D object itself, without user intervention. The effectiveness of our method is demonstrated in our experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Algorithm 2
Fig. 10
Fig. 11
Algorithm 3
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Au, O.K.C., Tai, C.L., Chu, H.K., Cohen-Or, D., Lee, T.Y., Project: Skeleton Extraction by Mesh Contraction. http://visgraph.cse.ust.hk/projects/skeleton/

  2. Au, O.K.C., Tai, C.L., Chu, H.K., Cohen-Or, D., Lee, T.Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27, 44:1–44:10 (2008)

    Article  Google Scholar 

  3. Aujay, G., Hétroy, F., Lazarus, F., Depraz, C.: Harmonic skeleton for realistic character animation. In: SCA’07, pp. 151–160 (2007)

    Google Scholar 

  4. Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. In: SIGGRAPH’07, p. 72 (2007)

    Google Scholar 

  5. Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. In: ECCV’00, pp. 603–618 (2000)

    Google Scholar 

  6. Cheng, Z.Q., Xu, K., Li, B., Wang, Y.Z., Dang, G., Jin, S.Y.: A mesh meaningful segmentation algorithm using skeleton and minima-rule. In: ISVC’07, pp. 671–680 (2007)

    Google Scholar 

  7. Chuang, J.H., Tsai, C.H., Ko, M.C.: Skeletonization of three-dimensional object using generalized potential field. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1241–1251 (2000)

    Article  Google Scholar 

  8. Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson, S.J., Kantor, P.B.: 3D object retrieval using many-to-many matching of curve skeletons. In: SMI’05, pp. 368–373 (2005)

    Google Scholar 

  9. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13, 530–548 (2007)

    Article  Google Scholar 

  10. Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005)

    Article  Google Scholar 

  11. Demarsin, K., Vanderstraeten, D., Roose, D.: Meshless extraction of closed feature lines using histogram thresholding. Comput.-Aided Des. Appl. 5(5), 589–600 (2008)

    Google Scholar 

  12. Dey, T.K., Sun, J.: Curve skeletons for 3D shapes. http://www.cse.ohio-states.edu/~tamaldey/cskel.html/

  13. Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: SGP’06, pp. 143–152 (2006)

    Google Scholar 

  14. Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: VIS’91, pp. 33–40, 408 (1991)

    Google Scholar 

  15. Goh, W.B.: Strategies for shape matching using skeletons. Comput. Vis. Image Underst. 110, 326–345 (2008)

    Article  Google Scholar 

  16. Hadwiger, M., Kniss, J.M., Rezk-salama, C., Weiskopf, D., Engel, K.: Real-Time Volume Graphics. A. K. Peters, Ltd., Natick (2006)

    Google Scholar 

  17. Hassouna, M.S., Farag, A.A.: Robust centerline extraction framework using level sets. In: CVPR’05, pp. 458–465 (2005)

    Google Scholar 

  18. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 954–961 (2003)

    Article  Google Scholar 

  19. Liao, D.: GPU-accelerated multi-valued solid voxelization by slice functions in real time. In: SCCG’08, pp. 113–120 (2010)

    Google Scholar 

  20. Lien, J.M., Keyser, J., Amato, N.M.: Simultaneous shape decomposition and skeletonization. In: SPM’06, pp. 219–228 (2006)

    Google Scholar 

  21. Liu, P.C., Wu, F.C., Ma, W.C., Liang, R.H., Ouhyoung, M.: Automatic animation skeleton construction using repulsive force field. In: PG’03, p. 409 (2003)

    Google Scholar 

  22. Ma, C.M., Wan, S.Y., Lee, J.D.: Three-dimensional topology preserving reduction on the 4-subfields. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1594–1605 (2002)

    Article  Google Scholar 

  23. Monga, O., Lengagne, R., Deriche, R.: Extraction of the zero-crossings of the curvature derivatives in volumic 3D medical images: a multi-scale approach. In: CVPR’94, pp. 852–855 (1994)

    Google Scholar 

  24. Ogniewicz, R., Ilg, M.: Voronoi skeletons: theory and applications. In: CVPR’92, pp. 63–69 (1992)

    Google Scholar 

  25. Pantuwong, N., Sugimoto, M.: 3D Curve-skeleton extraction algorithm using a pseudo-normal vector field. In: VMV’10, pp. 235–242 (2010)

    Google Scholar 

  26. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26 (2007)

  27. Poirier, M., Paquette, E.: Rig retargeting for 3D animation. In: GI’09, pp. 103–110 (2009)

    Google Scholar 

  28. Schwarz, M., Seidel, H.P.: Fast parallel surface and solid voxelization on GPUs. ACM Trans. Graph. 29, 179:1–179:10 (2010)

    Article  Google Scholar 

  29. She, F.H., Chen, R.H., Gao, W.M., Hodgson, P.H., Kong, L.X., Hong, H.Y.: Improved 3D thinning algorithms for skeleton extraction. In: DICTA’09, pp. 14–18 (2009)

    Google Scholar 

  30. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: SMI’04, pp. 167–178 (2004)

    Google Scholar 

  31. Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Saddle connectors—an approach to visualizing the topological skeleton of complex 3D vector fields. In: VIS’03, p. 30 (2003)

    Google Scholar 

  32. Wang, Y.S., Lee, T.Y.: Curve-skeleton extraction using iterative least squares optimization. IEEE Trans. Vis. Comput. Graph. 14, 926–936 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Yasuyuki Matsushita (Microsoft Research Asia) for his constructive duscussions and valuable suggestions. The research is sponsored by Microsoft Research Collaborative Research Projects (MSR CORE7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natapon Pantuwong.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 20.0 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantuwong, N., Sugimoto, M. Skeleton growing: an algorithm to extract a curve skeleton from a pseudonormal vector field. Vis Comput 29, 203–216 (2013). https://doi.org/10.1007/s00371-012-0721-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0721-0

Keywords

Navigation