Skip to main content
Log in

Empirical likelihood for heteroscedastic partially linear errors-in-variables model with α-mixing errors

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we apply the empirical likelihood method to heteroscedastic partially linear errors-in-variables model. For the cases of known and unknown error variances, the two different empirical log-likelihood ratios for the parameter of interest are constructed. If the error variances are known, the empirical log-likelihood ratio is proved to be asymptotic chi-square distribution under the assumption that the errors are given by a sequence of stationary α-mixing random variables. Furthermore, if the error variances are unknown, we show that the proposed statistic is asymptotically standard chi-square distribution when the errors are independent. Simulations are carried out to assess the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baran S (2004) Aconsistent estimator for linear models with dependent observations. Commun Stat Theory Methods 33(10):2469–2486

    MathSciNet  MATH  Google Scholar 

  • Chen GM, You JH (2005) An asymptotic theory for semiparametric generalized least squares estimation in partially linear regression models. Stat Pap 46: 173–193

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H (1988) Convergence rates for parametric components in a partial linear model. Ann Stat 16: 136–146

    Article  MATH  Google Scholar 

  • Chen SX (1993) On the accuracy of empirical likelihood confidence regions for linear regression model. Ann Inst Stat Math 45: 627–637

    Article  Google Scholar 

  • Chen SX (1994) Empirical likelihood confidence intervals for linear regression coefficients. J Multivar Anal 49: 24–40

    Article  MATH  Google Scholar 

  • Chen SX, Qin YS (2000) Empirical likelihood confidence intervals for local linear smoothers. Biometrika 87: 946–953

    Article  MathSciNet  MATH  Google Scholar 

  • Chiou JM, Müller HG (1999) Noparametric quasi-likekihood. Ann Stat 27: 36–64

    Article  MATH  Google Scholar 

  • Cui HJ, Chen SX (2003) Empirical likelihood confidence region for parameter in the errorsin-variable models. J Multivar Anal 84: 101–115

    Article  MathSciNet  MATH  Google Scholar 

  • Cui H, Kong E (2006) Empirical likelihood confidence region for parameters in semi-linear errors-in-variables models. Scand J Stat 33: 153–168

    Article  MathSciNet  MATH  Google Scholar 

  • Cui H, Li R (1998) On parameter estimation for semi-linear errors-in-variables models. J Multivar Anal 64: 1–24

    Article  MathSciNet  MATH  Google Scholar 

  • Doukhan P (1994) Mixing: properties and examples. Lecture notes in statistics, vol 85. Springer, Berlin

    Google Scholar 

  • Engle R, Granger C, Rice J, Weiss A (1986) Nonparametric estimates of the relation between weather and electricity sales. J Am Stat Assoc 81: 310–320

    Article  Google Scholar 

  • Fan J (1993) Local linear regression smoothers and their minimax efficiencies. Ann Stat 21: 196–216

    Article  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modeling and its applications. Chapman and Hall, London

    Google Scholar 

  • Fan GL, Liang HY, Wang JF, Xu HX (2010) Asymptotic properties for LS estimators in EV regression model with dependent errors. AStA Adv Stat Anal 94: 89–103

    Article  MathSciNet  Google Scholar 

  • Fazekas I, Kukush AG (1997) Asymptotic properties of an estimator in nonlinear functional errors-in-variables models with dependent error terms. Comput Math Appl 34(10): 23–39

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Heyde CC (1980) Martingale limit theory and its application. Academic, New York

    MATH  Google Scholar 

  • Härdle W, Liang H, Gao J (2000) Partially linear models. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Li GR, Xue LG (2008) Empirical likelihood confidence region for the parameter in a partially linear errors-in-variables model. Commun Stat Theory Methods 37: 1552–1564

    Article  MathSciNet  MATH  Google Scholar 

  • Liang H, Harder W, Carroll RJ (1999) Estimation in a semiparametric partially linear errors-in-variables model. Ann Stat 27: 1519–1535

    Article  MATH  Google Scholar 

  • Liang HY, Jing BY (2009) Asymptotic normality in partial linear models based on dependent errors. J Stat Plan Inference 139: 1357–1371

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75: 237–249

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1990) Empirical likelihood ratio confidence regions. Ann Stat 18: 90–120

    Article  MathSciNet  MATH  Google Scholar 

  • Patriota AG, Lemonte AJ, Bolfarine H (2011) Improved maximum likelihood estimators in a heteroskedastic errors-in-variables model. Stat Pap 52: 455–467

    Article  MathSciNet  MATH  Google Scholar 

  • Petrov VV (1995) Limit theorems of probability theory. Oxford University Press Inc, New York

    MATH  Google Scholar 

  • Rosenblatt M (1956) A central limit theorem and the α-mixing condition. Proc Natl Acad Sci USA 42: 43–47

    Article  MathSciNet  MATH  Google Scholar 

  • Shi J, Lau TS (2000) Empirical likelihood for partially linear models. J Multivar Anal 72: 132–148

    Article  MathSciNet  MATH  Google Scholar 

  • Speckman P (1988) Kernel smoothing in partial linear models. J R Stat Soc B 50: 413–436

    MathSciNet  MATH  Google Scholar 

  • Tabakan G, Akdeniz F (2010) Difference-based ridge estimator of parameters in partial linear model. Stat Pap 51: 357–368

    Article  MathSciNet  MATH  Google Scholar 

  • Volkonskii VA, Rozanov YA (1959) Some limit theorems for random functions. Theory Probab Appl 4: 178–197

    Article  MathSciNet  Google Scholar 

  • Wang QH, Jing BY (1999) Empirical likelihood for partial linear models with fixed designs. Stat Probab Lett 41: 425–433

    Article  MathSciNet  MATH  Google Scholar 

  • Wang QH, Jing BY (2003) Empirical likelihood for partial linear models. Ann Inst Stat Math 55: 585–595

    Article  MathSciNet  MATH  Google Scholar 

  • Yang SC (2007) Maximal moment inequality for partial sums of strong mixing sequences and application. Acta Math Sinica English Ser 23: 1013–1024

    Article  MATH  Google Scholar 

  • You JH, Chen GM (2005) Testing heteroscedasticity in partially linear regression models. Stat Probab Lett 73: 61–70

    Article  MathSciNet  MATH  Google Scholar 

  • You JH, Chen GM, Zhou Y (2007) Statistical inference of partially linear regression models with heteroscedastic errors. J Multivar Anal 98: 1539–1557

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang JJ, Liang HY (2011) Berry-Esseen type bounds in heteroscedastic semi-parametric model. J Stat Plan Inference 141: 3447–3462

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou HB, You JH, Zhou B (2010) Statistical inference for fixed-effects partially linear regression models with errors in variables. Stat Pap 51: 629–650

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Liang Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, GL., Liang, HY. & Wang, JF. Empirical likelihood for heteroscedastic partially linear errors-in-variables model with α-mixing errors. Stat Papers 54, 85–112 (2013). https://doi.org/10.1007/s00362-011-0412-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-011-0412-3

Keywords

Mathematics Subject Classification (2000)

Navigation