Skip to main content
Log in

Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Embryonic osmoregulation effected by embryonic ionocytes in the European sea bass Dicentrarchus labrax has been studied at several sites, including the yolk sac membrane, the first gill slits and the gut ionocytes. D. labrax embryos, spawned in seawater (SW) (39 ‰), were exposed to dilute seawater (DSW) (5 ‰) during 48 h, from stage 10 pairs of somites (10S) to hatching time (HT). Control embryos originating from the same spawn were maintained in SW. Both SW and DSW embryos were examined after 24- and 48-h exposure. Nanoosmometric measurements of the embryonic fluids osmolality suggest that late embryos are confronted with the variations in external salinity and that they were able to slightly regulate their osmolality. Immunolocalization of Na+/K+ ATPase, NKCC and CFTR has shown that DSW-exposed embryos can limit ion losses due to compensatory physiological mechanisms. CFTR and NKCC were not observed in DSW embryos in the yolk sac ionocytes and in the tegumentary ionocytes of the gill slits. The quantification of mRNA indicated that NKA, NKCC1 and CFTR transcript levels increased from stage 10S to stage HT. At stage HT, following 48 h of DSW- or SW-exposure, different responses were observed according to salinity. These results, when compared to those obtained in D. labrax juveniles and adults long-term exposed to fresh water (FW), show that in embryos the physiological response following a short-term DSW exposure is different. The mechanisms of hyper-osmoregulation observed in D. labrax embryos, although not fully efficient, allow their survival for several days in DSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alderdice D (1988) Osmotic and ionic regulation in teleost eggs and larvae. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, San Diego, pp 163–261

    Google Scholar 

  • Barnabé G (1989) L’élevage du loup et de la daurade. In: Barnabé G (ed) Aquaculture. Technique et documentation. Lavoisier, Paris, pp 675–720

  • Bayaa M, Vulesevic B, Esbaugh A, Braun M, Ekker ME, Grosell M, Perry SF (2009) The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. J Exp Biol 212:3283–3295

    Article  PubMed  CAS  Google Scholar 

  • Bodinier C, Boulo V, Lorin-Nebel C, Charmantier G (2009a) Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of Dicentrarchus labrax during ontogeny. J Anat 214:318–329

    Article  PubMed  CAS  Google Scholar 

  • Bodinier C, Lorin-Nebel C, Charmantier G, Boulo V (2009b) Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of juvenile Dicentrarchus labrax exposed to seawater and freshwater. Comp Biochem Phys A 153:345–351

    Article  Google Scholar 

  • Cerdà J (2009) Molecular pathways during marine fish egg hydration: the role of aquaporins. J Fish Biol 75:2175–2196

    Article  PubMed  Google Scholar 

  • Charmantier G, Charmantier-Daures M (2001) Ontogeny of osmoregulation in crustaceans: the embryonic phase. Am Zool 41:1078–1089

    Article  Google Scholar 

  • Cutler CP, Cramb G (2001) Molecular physiology of osmoregulation in eels and other teleosts: the role of transporter isoforms and gene duplication. Comp Biochem Phys A 130:551–564

    Article  CAS  Google Scholar 

  • Cutler CP, Cramb G (2002) Two isoforms of the Na+/K+/2Cl cotransporter are expressed in the European eel (Anguilla anguilla). BBA Biomembr 1566:92–103

    Article  CAS  Google Scholar 

  • Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295:R704–R713

    Article  PubMed  CAS  Google Scholar 

  • Evans DH (2011) Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes. Acta Physiol 202:349–359

    Article  CAS  Google Scholar 

  • Evans DH, Claiborne JB (2009) Osmotic and ionic regulation in fishes. In: Evans DH (ed) Osmotic and ionic regulation cells and animals. CRC Press, Boca Raton, pp 295–366

    Google Scholar 

  • Finn RN (2007) The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria. Aquat Toxicol 81:337–354

    Article  PubMed  CAS  Google Scholar 

  • Frost P, Nilsen F (2003) Validation of reference genes for transcription profiling in the salmon louse, Lepeaphtheirus salmonis, by quantitative real-time PCR. Vet Parasitol 118:169–174

    Article  PubMed  CAS  Google Scholar 

  • Giffard-Mena I, Lorin-Nebel C, Charmantier G, Castille R, Boulo V (2008) Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: role of aquaporins and Na+/K+-ATPases. Comp Biochem Physiol A 150:332–338

    Article  Google Scholar 

  • Grosell M (2006) Intestinal anion exchange in marine fish osmoregulation. J Exp Biol 209:2813–2827

    Article  PubMed  CAS  Google Scholar 

  • Grosell M, Mager EM, Williams C, Taylor JR (2009) High rates of HCO3 secretion and Cl absorption against adverse gradients in the marine teleost intestine: the involvement of an electrogenic anion exchanger and H+-pump metabolon? J Exp Biol 212:1684–1696

    Article  PubMed  CAS  Google Scholar 

  • Guggino WB (1980) Water balance in embryos of Fundulus heteroclitus and F. bermudae in seawater. Am J Physiol Regul Integr Comp Physiol 238:R36–R41

    CAS  Google Scholar 

  • Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T (2005a) Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl cotransporter and CFTR anion channel. J Exp Biol 208:2023–2036

    Article  PubMed  CAS  Google Scholar 

  • Hiroi J, Miyazaki H, Katoh F, Ohtani-Kaneko R, Kaneko T (2005b) Chloride turnover and ion-transporting activities of yolk-sac preparations (yolk balls) separated from Mozambique tilapia embryos and incubated in freshwater and seawater. J Exp Biol 208:3851–3858

    Article  PubMed  CAS  Google Scholar 

  • Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T (2008) Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211:2584–2599

    Article  PubMed  CAS  Google Scholar 

  • Hopwood D (2002) Fixation and fixatives. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 63–84

    Google Scholar 

  • Horng JL, Lin LY (2008) Expression of the Na-K-2Cl cotransporter in branchial mitochondrion-rich cells of Mozambique tilapia (Oreochromis mossambicus) subjected to varying chloride conditions. Zool Stud 47:733–740

    CAS  Google Scholar 

  • Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, Hwang PP (2007) A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS One 2:e302

    Article  PubMed  Google Scholar 

  • Hwang PP (1989) Distribution of chloride cells in teleost larvae. J Morphol 200:1–8

    Article  Google Scholar 

  • Hwang PP (2009) Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212:1745–1752

    Article  PubMed  CAS  Google Scholar 

  • Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Phys A 148:479–497

    Article  Google Scholar 

  • Hwang PP, Tsai YN, Tung YC (1994) Calcium balance in embryos and larvae of the freshwater adapted teleost, Oreochromis mossambicus. Fish Physiol Biochem 13:325–333

    Article  CAS  Google Scholar 

  • Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301:R28–R47

    Article  PubMed  CAS  Google Scholar 

  • Inokuchi M, Hiroi J, Watanabe S, Lee KM, Kaneko T (2008) Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp Biochem Phys A 151:151–158

    Article  Google Scholar 

  • Ivanis G, Esbaugh AJ, Perry SF (2008) Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid–base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211:2467–2477

    Article  PubMed  CAS  Google Scholar 

  • Jänicke M, Carney TJ, Hammerschmidt M (2007) Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev Biol 307:258–271

    Article  PubMed  Google Scholar 

  • Kaneko T, Hasegawa S, Takagi Y, Tagawa M, Hirano T (1995) Hypoosmoregulatory ability of eyed-stage embryos of chum salmon. Mar Biol 122:165–170

    Article  Google Scholar 

  • Katoh F, Cozzi R, Marshall W, Goss G (2008) Distinct Na+/K+/2Cl cotransporter localization in kidneys and gills of two euryhaline species, rainbow trout and killifish. Cell Tissue Res 334:265–281

    Article  PubMed  CAS  Google Scholar 

  • Lin LY, Horng JL, Kunkel JG, Hwang PP (2006) Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290:C371–C378

    Article  PubMed  CAS  Google Scholar 

  • Lønning S, Davenport J (1980) The swelling egg of the long rough dab, Hippoglossoides platessoides limandoides (Bloch). J Fish Biol 17:359–378

    Article  Google Scholar 

  • Lorin-Nebel C, Boulo V, Bodinier C, Charmantier G (2006) The Na+/K+/2Cl(−) cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. J Exp Biol 209:4908–4922

    Article  PubMed  CAS  Google Scholar 

  • Lytle C, Xu JC, Biemesderfer D, Forbush B 3rd (1995) Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am J Physiol Cell Physiol 269:C1496–C1505

    CAS  Google Scholar 

  • Machado B, Podrabsky J (2007) Salinity tolerance in diapausing embryos of the annual killifish Austrofundulus limnaeus is supported by exceptionally low water and ion permeability. J Physiol B 177:809–820

    Article  Google Scholar 

  • Marshall WS, Singer TD (2002) Cystic fibrosis transmembrane conductance regulator in teleost fish. BBA Biomembr 1566:16–27

    Article  CAS  Google Scholar 

  • Marshall WS, Watters KD, Hovdestad LR, Cozzi RRF, Katoh F (2009) CFTR Cl channel functional regulation by phosphorylation of focal adhesion kinase at tyrosine 407 in osmosensitive ion transporting mitochondria rich cells of euryhaline killifish. J Exp Biol 212:2365–2377

    Article  PubMed  CAS  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212:3994–4001

    Article  PubMed  CAS  Google Scholar 

  • Nebel C, Romestand B, Nègre-Sadargues G, Grousset E, Aujoulat F, Bacal J, Bonhomme F, Charmantier G (2005) Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: involvement of gills and urinary system. J Exp Biol 208:3859–3871

    Article  PubMed  CAS  Google Scholar 

  • Ouattara NG, Bodinier C, Nègre-Sadargues G, D’Cotta H, Messad S, Charmantier G, Panfili J, Baroiller JF (2009) Changes in gill ionocyte morphology and function following transfer from fresh to hypersaline waters in the tilapia Sarotherodon melanotheron. Aquaculture 290:155–164

    Article  CAS  Google Scholar 

  • Peterson RH, Martin-Robichaud DJ (1993) Rates of ionic diffusion across the egg chorion of Atlantic salmon (Salmo salar). Physiol Zool 66:289–306

    CAS  Google Scholar 

  • Pickett GD, Pawson MG (1994) Biology and ecology. In: Pitcher TJ (ed) Sea bass biology, exploitation and conservation. Chapman and Hall, London, pp 1–147

    Google Scholar 

  • Potts WTW, Eddy FB (1973) The permeability to water of the eggs of certain marine teleosts. J Comp Physiol A 82:305–315

    Article  Google Scholar 

  • Potts WTW, Rudy PPJ (1969) Water balance in the eggs of the Atlantic salmon Salmo salar. J Exp Biol 50:223–237

    PubMed  CAS  Google Scholar 

  • Rodet F, Lelong C, Dubos M-P, Costil K, Favrel P (2005) Molecular cloning of a molluscan gonadotropin-releasing hormone receptor orthologue specifically expressed in the gonad. Biochim Biophys Acta 1730:187–195

    Article  PubMed  CAS  Google Scholar 

  • Rudy PPJ, W. Potts WT (1969) Sodium balance in the eggs of the Atlantic salmon, Salmo salar. J Exp Biol 50:239–246

    PubMed  Google Scholar 

  • Scott GR, Richards JG, Forbush B, Isenring P, Schulte PM (2004) Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am J Physiol Cell Physiol 287:300–309

    Article  Google Scholar 

  • Shephard KL, McWilliams PG (1989) Ionic regulation by the eggs of salmon. Comp Biochem Physiol B 159:249–254

    Google Scholar 

  • Sucré E, Charmantier-Daures M, Grousset E, Charmantier G, Cucchi-Mouillot P (2009) Early development of the digestive tract (pharynx and gut) in the embryos and pre-larvae of the European sea bass Dicentrarchus labrax. J Fish Biol 75:1302–1322

    Article  PubMed  Google Scholar 

  • Sucré E, Charmantier-Daures M, Grousset E, Charmantier G, Cucchi-Mouillot P (2010) Embryonic occurrence of ionocytes in the sea bass Dicentrarchus labrax. Cell Tissue Res 339:543–550

    Article  PubMed  Google Scholar 

  • Sucré E, Charmantier-Daures M, Grousset E, Cucchi-Mouillot P (2011) Embryonic ionocytes in the European sea bass (Dicentrarchus labrax): structure and functionality. Dev Growth Differ 53:26–36

    Article  PubMed  Google Scholar 

  • Varsamos S, Connes R, Diaz JP, Barnabé G, Charmantier G (2001) Ontogeny of osmoregulation in the European sea bass Dicentrarchus labrax L. Mar Biol 138:909–915

    Article  Google Scholar 

  • Varsamos S, Diaz JP, Charmantier G, Flik G, Blasco C, Connes R (2002) Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to freshwater, seawater, and doubly concentrated seawater. J Exp Zool 293:12–26

    Article  PubMed  CAS  Google Scholar 

  • Varsamos S, Bonga SEW, Charmantier G, Flik G (2004) Drinking and Na+/K+ ATPase activity during the early development of the European sea bass, Dicentrarchus labrax ontogeny and short-term regulation following acute salinity changes. J Exp Mar Biol Ecol 311:189–200

    Article  CAS  Google Scholar 

  • Varsamos S, Nebel C, Charmantier G (2005) Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Phys A 141:401–429

    Article  Google Scholar 

  • Wang YF, Tseng YC, Yan JJ, Hiroi J, Hwang PP (2009) Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296:R1650–R1660

    Article  PubMed  CAS  Google Scholar 

  • Yamagami K (1981) Mechanisms of hatching in fish: secretion of hatching enzyme and enzymatic choriolysis. Am Zool 21:459–471

    CAS  Google Scholar 

  • Yanagie R, Lee KM, Watanabe S, Kaneko T (2009) Ontogenic change in tissue osmolality and developmental sequence of mitochondria-rich cells in Mozambique tilapia developing in freshwater. Comp Biochem Phys A 154:263–269

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the hatchery team at Les Poissons du Soleil, especially F. Ventre for providing D. labrax eggs and larvae. We thank Vicky Diakou (Montpellier RIO Imaging) for help with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliott Sucré.

Additional information

Communicated by G. Heldmaier.

M. Charmantier-Daures and P. Cucchi are entitled to share the position of senior author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sucré, E., Bossus, M., Bodinier, C. et al. Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach. J Comp Physiol B 183, 83–97 (2013). https://doi.org/10.1007/s00360-012-0687-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0687-2

Keywords

Navigation