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                    Abstract
We provide alternative axiomatic characterizations of the extended egalitarian rules (Moreno-Ternero and Roemer, Econometrica 74:1419–1427, 2006) in a fixed-population setting of the canonical resource allocation model based on individual capabilities (output functions). Our main axioms are disability monotonicity (no reduction in the amount of resources allocated to an agent after she becomes more disabled) and agreement (when there is a change in agents’ capabilities or total resources, all agents who remain unchanged should be influenced in the same direction: all unchanged agents get more or all get less or all get the same amount as before).
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                    Notes
	In Moreno-Ternero and Roemer (2006), each agent \(i\)’s output function is fixed and a variation of \(i\)’s output function is not admissible. Due to this inflexibility, they need the dense population assumption (see p. 1420, Moreno-Ternero and Roemer 2006). However, their results hold with only countably infinite population if each agent’s output function is allowed to be variable in the model. Our model is a fixed population version of this modification of their model.


	To give a formal justification of this reasoning, we need some extra assumptions on the model and a framework which allows us to formulate the priority view as an axiom for a social goodness function (Temkin 2003). This is beyond the scope of our current investigation and we leave it for future research.


	For all \(a>0,\,max\{y_{i},y_{i}'\}(a)\equiv max\{y_{i}(a),y_{i}'(a)\}\).


	The compatibility also holds without well-orderedness. For example, both the set of all concave output functions and the set of all convex output functions are rich. In the latter case, the domain is max-closed and so it is rich. In the former case, for all \(y_{i},y_{i}'\in \mathcal {Y}\) and \(a,b\in \mathbb {R}_{+}\) with \(a<b\) and \(y_{i}(a)<y_{i}'(b)\), by using the concave upper-envelope curve \(y_{i}''\) of \(y_{i}\) and \(y_{i}'\), one can show the richness.


	This is called semi-priority in Moreno-Ternero and Roemer (2004).


	This is called limited priority in Moreno-Ternero and Roemer (2004).


	In the case of disability monotonicity, there is no counterpart axiom in Moreno-Ternero and Roemer (2004). Their agent monotonicity may be the most related since it also compares awards for different disability levels. However, the comparison is made across two different persons, each person entering the same original population. Moreover, their axiom also imposes “solidaristic” influences of the entrances of the two persons on what all persons in the original population get. Our disability monotonicity involves no population variation and no solidaristic condition. It is about the influence of a person’s disability on the share of the same person.


	As a referee points out, the statement of Step 1 defines another solidarity axiom, “others-oriented disability monotonicity”. This step shows that agreement and disability monotonicity together imply this new solidarity axiom.


	This result can be compared with Corollary 3 in Moreno-Ternero and Roemer (2004), which is based on “agreement”, “agent monotonicity”, no reversal and the well-orderedness assumption on the domain. Their “agreement” is a variable population variant of our agreement. More important are the following two differences. First, as explained in Footnote 7, their agent monotonicity involves a composite population-disability change and imposes multiple relational conditions on the awards of all persons after the change, whereas our disability monotonicity involves only a change in the disability level of a person in a fixed population and imposes an inequality relation between her awards before and after the change. Second, our result holds in any rich covering domain without well-orderedness, while their result needs the well-orderedness assumption. Any well-ordered domain is rich as we noted earlier after the definition of the domain richness. Thus our result applies to a wider variety of domains than their result.


	When \(M\) is a singleton, this lemma coincides with Claim in Moreno-Ternero and Roemer (2006, p. 1425) and Lemma 1 in Moreno-Ternero and Roemer (2004). Our proof is similar to theirs (except that we use resource continuity which makes the proof simpler).
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Appendix: Proof of Theorem 1
Appendix: Proof of Theorem 1
We prove Theorem 1 through an adaptation of the proof used by Moreno-Ternero and Roemer (2006). Their solidarity axiom in the variable population model implies an invariance property in the reduced-population-problem, known as “consistency”, which plays an essential role in their proof. We cannot utilize the same proof since we consider a different solidarity axiom formulated for the fixed population model.
Fix \(\tilde{y}_{1}\in \mathcal {Y}\). Given a rule \(F\), for all \(\alpha \in R_{+}\), let \(E(\alpha )\) be the set of economies where an agent with \(\tilde{y}_{1}\) exists and any agent with \(\tilde{y}_{1}\) receives \(\alpha \), that is, \(\mathcal {E}(\alpha )\equiv \{e\in \mathcal {E}:\) for some \(i\in N\), \(y_{i}=\tilde{y}_{1}\) and for all \(j\in N\) with \(y_{j}=\tilde{y}_{1},\,F_{j}(e)=\alpha \}\). Let \(C(\alpha )\) be the set of all resource-outcome pairs in all economies in \(\mathcal {E}(\alpha )\), that is, \(C(\alpha )\equiv \{(a,b)\in \mathbb {R}_{+}^{2}:\) there is \(e\in \mathcal {E}(\alpha )\) such that for some \(j\in N,\,F_{j}(e)=a\) and \(y_{j}(a)=b\}\).

                  
                    Lemma 1
                  

                  If \(F\) satisfies no-domination and resource continuity, then for all \(y\in \mathcal {Y}\), all \(M\subset N\), and all \(\alpha \in \mathbb {R}_{+}\), there exists \(W^{*}\in \mathbb {R}_{+}\) such that \(\sum _{i\in M}F_{i}(y,W^{*})=\alpha \).Footnote 10
                  

                
                  
                    Proof
                  

                  Let \(y\in \mathcal {Y}^{N},\,M\subseteq N\) and \(\alpha \ge 0\). Let \(W_{1}\in \mathbb {R}_{+}\) be such that \(W_{1}<\alpha \). Since \(\sum _{i\in N}F_{i}(y,W_{1})=W_{1}\) and for all \(i\in N\), \(F_{i}(e)\ge 0\), then \(\sum _{i\in M}F_{i}(y,W_{1})<\alpha \).

                  We next show that there is \(W_{2}\ge 0\) such that \(\sum _{i\in M}F_{i}(y,W_{2})>\alpha \). Consider a sequence \((W^{n}:n\in \mathbb {N})\) such that \(\lim _{n\rightarrow \infty }W^{n}=\infty \). Since for all \(n,\,\sum _{i\in N}F_{i}(y,W^{n})=W^{n}\), there is \(j\in N\) such that \((F_{j}(y,W^{n}):n\in \mathbb {N})\) is an unbounded sequence. Then, since \(y_{j}(\cdot )\) is an unbounded function, \((y_{j}(F_{j}(y,W^{n})):n\in \mathbb {N})\) is also an unbounded sequence.

                  We show that there is \(\bar{n}\) such that \(\sum _{i\in M}F_{i}(y,W^{\bar{n}})>\alpha \). Suppose by contradiction that for all \(n\in \mathbb {N},\,\sum _{i\in M}F_{i}(y,W^{n})\le \alpha \). Since both \((F_{j}(y,W^{n}):n\in \mathbb {N})\) and \((y_{j}(F_{j}(y,W^{n})):n\in \mathbb {N})\) are unbounded, there is \(n\) such that \(\sum _{i\in M}F_{i}(y,W^{n})\le \alpha <F_{j}(y,W^{n})\) and for all \(i\in M,\,y_{i}(\alpha )<y_{j}(F_{j}(y,W^{n}))\). Hence for such \(n\), for all \(i\in M\), \(F_{i}(y,W^{n})\le \alpha <F_{j}(y,W^{n})\) and \(y_{i}(F_{i}(y,W^{n}))\le y_{i}(\alpha )<y_{j}(F_{j}(y,W^{n}))\), which contradicts no-domination.
                  

                  Now let \(W_{2}\equiv W^{\bar{n}}\). Then \(\sum _{i\in M}F_{i}(y,W_{2})>\alpha \). Since \(\sum _{i\in M}F_{i}(y,W_{1})<\alpha <\sum _{i\in M}F_{i}(y,W_{2})\), by resource continuity, there is \(W^{*}\in \mathbb {R}_{+}\) such that \(\sum _{i\in M}F_{i}(y,W^{*})=\alpha \). \(\square \)
                  

                
                  
                    Lemma 2
                  

                  Assume that \(F\) satisfies no-domination and agreement. For all \(e\equiv (y,W)\) and all three distinct \(i,j,k\in N\), there is \(e'\equiv (y',W')\) such that \(y_{i}'=y_{i},\,y_{j}'=y_{k}'=y_{j}\), \(F_{i}(e')=F_{i}(e)\) and \(F_{j}(e')=F_{k}(e')=F_{j}(e)\).

                
                  
                    Proof
                  

                  Let \(e\equiv (y,W)\) and \(i,j,k\) are distinct. Let \(y'\) be such that \(y_{i}'=y_{i}\) and \(y_{j}'=y_{k}'=y_{j}\). By Lemma 1, there is \(W'\) such that \(F_{i}(e')+F_{j}(e')=F_{i}(e)+F_{j}(e)\), where \(e'\equiv (y',W')\). By separability (implied by agreement), \(F_{i}(e')=F_{i}(e)\) and \(F_{j}(e')=F_{j}(e)\). Since \(y_{j}'=y_{k}'=y_{j}\), then by no-domination, \(F_{k}(e')=F_{j}(e)\). \(\square \)
                  

                We show that for all \(\alpha \ge 0,\,C(\alpha )\) is downward sloping.

                  
                    Lemma 3
                  

                  If \(F\) satisfies no-domination and agreement, then \(C(\alpha )\) is downward sloping, that is, for all \((a,b),(a',b')\in C(\alpha )\) with \(a<a'\), we have \(b\ge b'\).

                
                  
                    Proof
                  

                  Assume that \(F\) satisfies no-domination and agreement. To prove that \(C(\alpha )\) is downward sloping, suppose, to the contrary, that for some \((a,b),(a',b')\in C(\alpha )\), \(a<a'\) and \(b<b'\). By definition of \(C(\alpha )\), there exist \(e=(y,W)\in \mathcal {E}(\alpha )\) and \(e'=(y',W')\in \mathcal {E}(\alpha )\) such that for some \(i,j\in N\), \((a,b)=(F_{i}(e),y_{i}(F_{i}(e)))\) and \((a',b')=(F_{j}(e'),y'_{j}(F_{j}(e')))\). By Lemma 2, we may let \(y_{1}=\tilde{y}_{1}=y_{1}'\) and assume that \(1,i,j\) are three distinct agents. Note that \(F_{1}(e)=F_{1}(e')=\alpha \). Let \(\hat{y}\) be such that \(\hat{y}_{\{1,i,j\}}=y'_{\{1,i,j\}}\) and \(\hat{y}_{N\backslash \{1,i,j\}}=y_{N\backslash \{1,i,j\}}\). By Lemma 1, there is \(\hat{W}\) such that \(F_{1}(\hat{e})+F_{i}(\hat{e})+F_{j}(\hat{e})=F_{1}(e')+F_{i}(e')+F_{j}(e')\), where \(\hat{e}\equiv (\hat{y},\hat{W})\). By separability (implied by agreement),\( F_{\{1,i,j\}}(\hat{e})=F_{\{1,i,j\}}(e')\).

                  Let \(y''\) be such that \(y''_{i}=y_{i}\), \(y''_{j}=y'_{j}\), \(y''_{1}=\tilde{y}_{1}\) and for all \(h\ne i,j,1,\,y_{h}''=y_{h}\). By Lemma 1, there is \(W''\ge 0\) such that
$$\begin{aligned} F_{1}(e'')+F_{i}(e'')+F_{j}(e'')=\alpha +a+a', \end{aligned}$$

                    (1)
                

where \(e''\equiv (y'',W'')\). Suppose \(F_{1}(e'')>\alpha \). By applying agreement to \(e\) and \(e''\), we get \(F_{i}(e'')>a\). Likewise, by applying agreement to \(\hat{e}\) and \(e''\), we get \(F_{j}(e'')>a'\). Altogether, \(F_{1}(e'')+F_{i}(e'')+F_{j}(e'')>\alpha +a+a'\), contradicting (1). Therefore \(F_{1}(e'')\le \alpha \). Similarly, we can show \(F_{1}(e'')\ge \alpha \). Hence \(F_{1}(e'')=\alpha \).

                  Then by agreement,
                    \(F_{i}(e'')=a\) and \(F_{j}(e'')=a'\). Therefore, \((a,b)=(F_{i}(e''),y''_{i}(e''))\)
                    \(<(F_{j}(e''),y''_{j}(e''))=(a',b')\), contradicting no-domination. \(\square \)
                  

                
                  
                    Lemma 4
                  

                  
                    \(\{C(\alpha ):\alpha \in \mathbb {R}_{+}\}\) is a collection of disjoint sets.

                
                  
                    Proof
                  

                  Let \(\alpha _{1}>\alpha _{2}\). Suppose that \((a,b)\in C(\alpha _{1})\cap C(\alpha _{2})\). Then there exist \(e^{1}=(y,W^{1})\) and \(i\in N\) such that \(y_{1}=\tilde{y},\,F_{1}(e)=\alpha _{1}\), and \((F_{i}(e^{1}),y_{i}(F_{i}(e^{1})))=(a,b)\). By Lemma 1, there is \(W^{2}\) such that \(F_{1}(y,W^{2})=\alpha _{2}\). Let \(e^{2}\equiv (y,W^{2})\). By resource monotonicity, \(F_{i}(e^{1})=a>F_{i}(e^{2})\), and so \(y_{i}(F_{i}(e^{1}))=b>y_{i}(F_{i}(e^{2}))\). Since \((a,b)\in C(\alpha _{2})\) and \((F_{i}(e^{2}),y_{i}(F_{i}(e^{2})))\in C(\alpha _{2}),\,C(\alpha _{2})\) is not downward sloping, contradicting the conclusion of Lemma 3. \(\square \)
                  

                The next lemma says that, by varying \(\alpha \ge 0,\,C(\alpha )\)’s can cover the positive quadrant.

                  
                    Lemma 5
                  

                  For all \((a,b)\in \mathbb {R}_{++}^{2}\cup \{(0,0)\}\), there is a unique \(\alpha \ge 0\) such that \((a,b)\in C(\alpha )\).

                
                  
                    Proof
                  

                  Let \((a,b)\in \mathbb {R}_{++}^{2}\cup \{(0,0)\}\). Since \(\mathcal {Y}\) covers the positive quadrant, there exist \(y\in \mathcal {Y}^{N}\) and \(i\in N\backslash \{1\}\) such that \(y_{i}(a)=b\) and \(y_{1}(\cdot )=\tilde{y}_{1}(\cdot )\). By Lemma 1, there exists \(W\in \mathbb {R}_{+}\) such that \(F_{i}(y,W)=a\). By letting \(\alpha \equiv F_{1}(y,W)\), we get \((a,b)\in C(\alpha )\). Finally, the uniqueness of \(\alpha \) is implied by Lemma 4. \(\square \)
                  

                The next lemma says that if \(\alpha _{1}>\alpha _{2}\), then \(C(\alpha _{1})\) lies above \(C(\alpha _{2})\).

                  
                    Lemma 6
                  

                  If \(\alpha _{1}>\alpha _{2}\), then (i) for all \((a,b)\in C(\alpha _{2})\) there exists \((a',b')\in C(\alpha _{1})\) such that \((a,b)<(a',b')\), and (ii) there is no \((a{''},b{''})\in C(\alpha _{2})\) and \((a,b)\in C(\alpha _{1})\) such that \((a{''},b{''})>(a,b)\).

                
                  
                    Proof
                  

                  Fix \(\alpha _{1}>\alpha _{2}\). To prove (i), let \((a,b)\in C(\alpha _{2})\). Let \(e=(y,W)\in \mathcal {E}(\alpha _{2})\) and \(i\in N\) be such that \(y_{1}=\tilde{y}_{1},\,F_{1}(e)=\alpha _{2}\), and \((F_{i}(e),y_{i}(F_{i}(e)))=(a,b)\). By Lemma 1, there is \(W'\) such that \(F_{1}(y,W')=\alpha _{1}\). Since \(\alpha _{1}>\alpha _{2}\), by agreement,
                    \(F_{i}(y,W')>F_{i}(y,W')=a\). Thus by letting \(a'\equiv F_{i}(y,W')\) and \(b'\equiv y_{i}(a')\), we get \((a,b)<,\,(a',b')\in C(\alpha _{1})\).

                  To prove (ii), suppose by contradiction that there exist \((a,b)\in C(\alpha _{1})\) and \((a{''},b{''})\in C(\alpha _{2})\) such that \((a{''},b{''})>(a,b)\). By (i), there is \((a^{*},b^{*})\in C(\alpha _{1})\) such that \((a^{*},b^{*})>(a{''},b{''})\). Therefore, \((a^{*},b^{*})>(a,b)\), which contradicts that \(C(\alpha _{1})\) is downward sloping. \(\square \)
                  

                The next lemma can be established from the above lemmas as in Moreno-Ternero and Roemer (2006).

                  
                    Lemma 7
                  

                  Given a rule satisfying no-domination and resource monotonicity, for all \((a,b)\in \mathbb {R}_{++}^{2}\), let \(\varphi (a,b)\equiv \alpha \), for some \(\alpha \in \mathbb {R}_{+}\) satisfying \((a,b)\in C(\alpha )\). Then \(\varphi :\mathbb {R}_{++}^{2}\cup \{(0,0)\}\rightarrow \mathbb {R}_{+}\) is well-defined, continuous, and non-decreasing,
                    \(\inf \{\varphi (a,b):(a,b)\in \mathbb {R}_{++}^{2}\}=\varphi (0,0)=0\), and for all \((a,b),(a',b')\) with \(a<a'\)and \(b<b'\), \(\varphi (a,b)<\varphi (a',b')\).

                Now we are ready to prove Theorem 1.

                  
                    Proof of Theorem 1
                  

                  For all \((a,b)\in \mathbb {R}_{++}^{2}\cup \{(0,0)\}\), let \(\varphi (a,b)\equiv \alpha \), where \(\alpha \) is such that \((a,b)\in C(\alpha )\). By Lemma 5, \(\varphi (\cdot )\) is well-defined. By Lemma 7, \(\varphi \in \Phi \).

                  We now show that \(F(y,W)=E^{\varphi }(y,W)\) for all \((y,W)\in \mathcal {E}\). Let \(e=(y,W)\in \mathcal {E}\).

                  If for some \(i\in N,\,y_{i}=\tilde{y}_{1}\), then by letting \(\lambda =F_{i}(e)\), we have for all \(j\in N\), \((F_{j}(e),y_{j}(F_{j}(e)))\in C(\lambda )\). Therefore, \(\psi _{j}(F_{j}(e))=\varphi (F_{j}(e),y_{j}(F_{j}(e)))=\lambda \) for all \(j\). Since \(\sum _{j\in N}F_{j}(e)=W,\,F(e)=E^{\varphi }(e)\).

                  We now consider the case that there is no \(i\in N\) with \(y_{i}=\tilde{y}_{1}\). We will show that there is unique \(\alpha \ge 0\) such that \((F_{h}(e),y_{h}(F_{h}(e)))\in C(\alpha )\) for all \(h\in N\). Consider \(y'\equiv (\tilde{y}_{1},y_{2},\ldots ,y_{n})\). By Lemma 1, there is \(W'\) such that \(\sum _{h\in N\backslash \{1\}}F_{h}(y',W')=\sum _{h\in N\backslash \{1\}}F_{h}(e)\). By separability (implied by agreement), for all \(h\in N\backslash \{1\},\,F_{h}(y',W')=F_{h}(e)\). Hence for all \(h\in N\backslash \{1\},\,(F_{h}(e),y_{h}(F_{h}(e)))\in C(\alpha )\). Similarly, we can show that \((F_{1}(e),y_{1}(F_{1}(e)))\in C(\alpha )\). Therefore, for all \(h\in N\), \(\psi _{h}(F_{h}(e))=\varphi (F_{h}(e),y_{h}(F_{j}(e)))=\alpha \) and \(F(e)=E^{\varphi }(e)\). \(\square \)
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