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                    Abstract
A new optical sensor technique based on a sensor film with arrays of hair-like flexible micropillars on the surface is presented to measure the temporal and spatial wall shear stress field in boundary layer flows. The sensor principle uses the pillar tip deflection in the viscous sublayer as a direct measure of the wall shear stress. The pillar images are recorded simultaneously as a grid of small bright spots by high-speed imaging of the illuminated sensor film. Two different ways of illumination were tested, one of which uses the fact that the transparent pillars act as optical microfibres, which guide the light to the pillar tips. The other method uses pillar tips which were reflective coated. The tip displacement field of the pillars is measured by image processing with subpixel accuracy. With a typical displacement resolution on the order of 0.2 μm, the minimum resolvable wall friction value is τw≈20 mPa. With smaller pillar structures than those used in this study, one can expect even smaller resolution limits.
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Appendices
Appendix 1
Stokes’ drag force in an oscillating boundary layer flow
Unlike Oseen’s approximate quasi-steady solution, Stokes’ solution for a cylinder oscillating in a fluid accounts for oscillatory flow conditions and added mass effects. The drag force per unit length on the cylinder oscillating with velocity U(t)=U0sin(ωt) is: 
$$ f_{{\text{S}}} = {\left| {Z_{{\text{S}}} } \right|}{\kern 1pt} \cdot U_{0} \sin {\left( {\omega t + \zeta _{{\text{S}}} } \right)} $$

                    (6)
                

The quantity ZS is the Stokes’ mechanical impedance and ζS is a phase shift, both of which are expressed by the following formulae: 
$$ Z_{{\text{S}}} = Z_{{\text{R}}} + iZ_{{\text{I}}} = 4\pi \eta \cdot \frac{{ - g}} {{g^{2} + {\left( {\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4} \right)}^{2} }} + i4\pi \eta \cdot {\left[ {\frac{{\omega D^{2} }} {{16\nu }} + \frac{{\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4}} {{g^{2} + {\left( {\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4} \right)}^{2} }}} \right]} $$

                    (7)
                


$${\left| {Z_{{\text{S}}}} \right|} = {\sqrt {Z^{2}_{{\text{R}}} + \,Z^{2}_{{\text{I}}}}} ,$$

                    (8)
                


$$ \zeta _{S} = \tan ^{{ - 1}} {\left( {{Z_{{\text{I}}} } \mathord{\left/ {\vphantom {{Z_{{\text{I}}} } {Z_{{\text{R}}} }}} \right. \kern-\nulldelimiterspace} {Z_{{\text{R}}} }} \right)} $$

                    (9)
                


$$ g = 0.577 + \ln {\left( {{\sqrt {{\omega D^{2} } \mathord{\left/ {\vphantom {{\omega D^{2} } {16v}}} \right. \kern-\nulldelimiterspace} {16v}} }} \right)} $$

                    (10)
                

To take into account the velocity profile in the boundary layer of the sensor film, we use Stokes’ solution for the boundary layer of an oscillating flow with U(t)=U0sin(ωt) at infinity above a flat plate yielding the following velocity profile: 
$$ u{\left( {z,t} \right)} = U{\left( z \right)}\sin {\left( {\omega t + \xi _{{\text{S}}} {\left( z \right)}} \right)} $$

                    (11)
                

 with: 
$$ U{\left( z \right)} = U_{0} {\sqrt {{\left( {1 - {\text{e}}^{{ - \beta z}} \cdot \cos {\left( {\beta z} \right)}} \right)}^{2} + {\left( {{\text{e}}^{{ - \beta z}} \cdot \sin {\left( {\beta z} \right)}} \right)}^{2} } } $$

                    (12)
                


$$ \xi {\left( z \right)} = \tan ^{{ - 1}} {\left[ {{{\text{e}}^{{ - \beta z}} \sin {\left( {\beta z} \right)}} \mathord{\left/ {\vphantom {{{\text{e}}^{{ - \beta z}} \sin {\left( {\beta z} \right)}} {{\left( {1 - {\text{e}}^{{ - \beta z}} \cos {\left( {\beta z} \right)}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {1 - {\text{e}}^{{ - \beta z}} \cos {\left( {\beta z} \right)}} \right)}}} \right]} $$

                    (13)
                


$$ \beta = {\sqrt {\omega \mathord{\left/ {\vphantom {\omega {2v}}} \right. \kern-\nulldelimiterspace} {2v}} } $$

                    (14)
                

 The actual force distribution on the pillars in the boundary layer is defined by the relative velocity u(z, t)−∂w/∂t, leading to the following expression of the force: 
$$ f_{{\text{S}}} {\left( {z,t} \right)} = {\left| {Z_{s} {\left( z \right)}} \right|}{\left\{ {U{\left( z \right)}\sin {\left( {\omega t + \xi _{{\text{s}}} {\left( z \right)} + \zeta _{{\text{s}}} {\left( z \right)}} \right)} - \ifmmode\expandafter\dot\else\expandafter\.\fi{w}{\left( {z,{\left( {t + {\zeta _{{\text{s}}} {\left( z \right)}} \mathord{\left/ {\vphantom {{\zeta _{{\text{s}}} {\left( z \right)}} \omega }} \right. \kern-\nulldelimiterspace} \omega } \right)}} \right)}} \right\}} $$

                    (15)
                

Appendix 2
Frequency response of the pillars in the boundary layer
The response of the pillars to a certain oscillating force F(z, t), which is due to the viscous drag of the fluid moving around the pillars, is described by the one-dimensional Euler–Bernoulli differential equation. Following elastic theory, the governing equation (GE) of the motion of a uniform, homogeneous, one-side clamped cantilever beam with density ρ, cross-sectional area \($ \ifmmode\expandafter\tilde\else\expandafter\~\fi{A},$\)
Young’s modulus E and area moment of inertia I is given by: 
$$ EI\frac{{\partial ^{4} w{\left( {z,t} \right)}}} {{\partial z^{4} }} + \rho \ifmmode\expandafter\tilde\else\expandafter\~\fi{A}\frac{{\partial ^{2} w{\left( {z,t} \right)}}} {{\partial t^{2} }} = f_{{\text{S}}} {\left( {z,t} \right)}\; $$

                    (16)
                

 The damping and added mass effects are included in the drag force fS(z, t), which is described by the Stokes’ solution, see Eq. 15. For the above defined cantilever beam, the necessary boundary conditions to solve Eq. 16 are w|(z=0, t)=0, ∂w/∂z|(z=0, t)=0 for the clamped end at z=0 and ∂2w/∂z2|(z=L, t)= 0, ∂3w/∂z3|(z=L, t)=0 for the free end.
For the frequency response in the form of transverse vibrations, we assume a synchronous motion, which implies that the solution w(z, t) is separable in its spatial and temporal components. A particular solution of separated variables in t and z, i.e. the mode vibration η(t) and the mode shape Φ(z), is chosen as given in Eq. 17. It can be shown that the general solution can be expressed as a summation of all particular solutions: 
$$ w_{{\text{i}}} {\left( {z,t} \right)} = \eta _{{\text{i}}} {\left( t \right)}\,\Phi _{{\text{i}}} {\left( z \right)} \to w{\left( {z,t} \right)} = {\sum\limits_{i = 1}^\infty {\eta _{i} {\left( t \right)}\Phi _{i} {\left( z \right)}} } $$

                    (17)
                

 This solution procedure for Eq. 16 is called the normal mode expansion, in which the modes, i.e. the eigenfunctions, are obtained from the associated eigenvalue problem, i.e. the non-forced case. Then, Eq. 16 can be split into two equations for the time-dependent part η
                    i
                  (t) and for the spatial dependence Φ
                    i
                  (z): 
$$ \begin{array}{*{20}l} {{{\text{non - forced:}}} \hfill} & {{\ifmmode\expandafter\ddot\else\expandafter\"\fi{\eta }_{i} + {\underbrace {{\left( {\frac{{EI\Phi _{{izzzz}} }} {{\rho \ifmmode\expandafter\tilde\else\expandafter\~\fi{A}\Phi _{i} }}} \right)}}_{{{\text{const}} = \omega ^{2}_{i} }}}\eta _{i} = 0} \hfill} \\ {{{\text{forced:}}} \hfill} & {{\ifmmode\expandafter\ddot\else\expandafter\"\fi{\eta }_{i} + \omega ^{2}_{i} \eta _{i} = \ifmmode\expandafter\tilde\else\expandafter\~\fi{C}_{i} {\int\limits_0^L {f{\left( {z,t} \right)}\Phi _{i} {\left( z \right)}\,{\text{d}}z} }\quad {\text{with}}\; \ifmmode\expandafter\tilde\else\expandafter\~\fi{C}_{i} = {\left( {\rho \ifmmode\expandafter\tilde\else\expandafter\~\fi{A}{\int\limits_0^L {\Phi ^{2}_{i} {\left( z \right)}{\text{d}}z} }} \right)}^{{ - 1}} } \hfill} \\ \end{array} $$

                    (18)
                


$$ \Phi _{{i\,zzzz}} - \frac{{\rho \ifmmode\expandafter\tilde\else\expandafter\~\fi{A}}} {{\,EI}}\omega ^{2}_{i} \Phi _{i} = 0 $$

                    (19)
                

 The mode shapes Φi(z) are independent of the force approximation and can be determined from the non-forced case f(z, t)=0. Under the above constraints, the resulting mode shapes are determined (Volterra and Zachmanoglou 1965): 
$$ \Phi _{i} {\left( z \right)} = \frac{1} {2}{\left\{ {\cos {\left( {\frac{{\lambda _{i} z}} {L}} \right)} - \cosh {\left( {\frac{{\lambda _{i} z}} {L}} \right)} + \ifmmode\expandafter\bar\else\expandafter\=\fi{C}_{i} {\left[ {\sin {\left( {\frac{{\lambda _{i} z}} {L}} \right)} - \sinh {\left( {\frac{{\lambda _{i} z}} {L}} \right)}} \right]}} \right\}} $$

                    (20)
                

 where λ
                    i
                   and \(\ifmmode\expandafter\bar\else\expandafter\=\fi{C}_{{\text{i}}} \)
are integration constants determined from the boundary conditions. Note that only the first few modes of vibration have significantly large amplitudes. In a first approximation, only the first mode Φ1(z) is considered with λ1=1.875 and \( \ifmmode\expandafter\bar\else\expandafter\=\fi{C}_{1} = 0.734. \)
In addition, since the system is analysed for the steady-state response, we assume a response with the same frequency dependence as the force in the form: 
$$ U{\left( t \right)} = U_{0} \sin {\left( {\omega t} \right)} \to \eta _{1} {\left( t \right)} = H_{1} \sin {\left( {\omega t + \varphi _{1} } \right)} $$

                    (21)
                

 Plugging the expression of the force given in Eq. 15 and the mode vibration given by Eq. 21 into Eq. 18, together with the first mode shape in Eq. 20, one obtains the following analytical expression for the amplitude H1 and phase ϕ1 of η1(t): 
$$ H_{1} = {\sqrt {\frac{{A^{2}_{1} + B^{2}_{1} }} {{{\left( {\omega ^{2}_{1} - \omega ^{2} - \omega C_{1} } \right)}^{2} + \omega ^{2} D^{2}_{1} }}} } $$

                    (22)
                


$$ \varphi _{1} = \tan ^{{ - 1}} {\left( {\frac{{{\left( {\omega ^{2}_{1} - \omega ^{2} - \omega C_{1} } \right)}B_{1} - \omega D_{1} A_{1} }} {{{\left( {\omega ^{2}_{1} - \omega ^{2} - \omega C_{1} } \right)}B_{1} + \omega D_{1} A_{1} }}} \right)} $$

                    (23)
                

 with: 
$$ A_{1} = \ifmmode\expandafter\tilde\else\expandafter\~\fi{C}_{1} {\int\limits_0^L {\,{\left| {Z_{{\text{S}}} {\left( z \right)}} \right|}U{\left( z \right)}\Phi _{1} {\left( z \right)}\cos {\left( {\zeta _{{\text{S}}} {\left( z \right)} + \xi _{{\text{S}}} {\left( z \right)}} \right)}{\text{d}}z} } $$

                    (24)
                


$$ B_{1} = \ifmmode\expandafter\tilde\else\expandafter\~\fi{C}_{1} {\int\limits_0^L {{\left| {Z_{{\text{S}}} {\left( z \right)}} \right|}U{\left( z \right)}\Phi _{1} {\left( z \right)}\sin {\left( {\zeta _{{\text{S}}} {\left( z \right)} + \,\xi _{{\text{S}}} {\left( z \right)}} \right)}{\text{d}}z} } $$

                    (25)
                


$$ C_{1} = \ifmmode\expandafter\tilde\else\expandafter\~\fi{C}_{1} {\int\limits_0^L {{\left| {Z_{{\text{S}}} {\left( z \right)}} \right|}\Phi ^{2}_{1} {\left( z \right)}\sin {\left( {\zeta _{{\text{S}}} {\left( z \right)}} \right)}{\text{d}}z} } $$

                    (26)
                


$$ D_{1} = \ifmmode\expandafter\tilde\else\expandafter\~\fi{C}_{1} {\int\limits_0^L {{\left| {Z_{{\text{S}}} {\left( z \right)}} \right|}\Phi ^{2}_{1} {\left( z \right)}\cos {\left( {\zeta _{{\text{S}}} {\left( z \right)}} \right)}{\text{d}}z} } $$

                    (27)
                

Finally, the deflection of the first-mode vibration of the beam in a steady-state response is given as: 
$$ w_{1} {\left( {z,t} \right)} = \eta _{1} {\left( t \right)}\Phi _{1} {\left( z \right)} = H_{1} \sin {\left( {\omega t + \varphi _{1} } \right)}\Phi _{1} {\left( z \right)} $$

                    (28)
                

 and the tip deflection amplitude reads as: 
$$ w_{{\text{L}}} = H_{1} \Phi _{1} {\left( L \right)} $$

                    (29)
                



Rights and permissions
Reprints and permissions


About this article
Cite this article
Brücker, C., Spatz, J. & Schröder, W. Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars.
                    Exp Fluids 39, 464–474 (2005). https://doi.org/10.1007/s00348-005-1003-7
Download citation
	Received: 11 October 2004

	Revised: 15 April 2005

	Accepted: 20 April 2005

	Published: 17 June 2005

	Issue Date: August 2005

	DOI: https://doi.org/10.1007/s00348-005-1003-7


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	PDMS
	Wall Shear Stress
	Boundary Layer Flow
	Viscous Sublayer
	Sensor Film








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					3.239.56.174
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature




	






    