Skip to main content
Log in

Lasing with conical diffraction feature in the KGd(WO4)2:Nd biaxial crystal

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

With an experimental set-up designed to record simultaneously the far-field and the near-field patterns, we got lasing with feature of conical diffraction in the biaxial Nd3+-doped KGd(WO4)2 crystal. The key-point is that the lasing direction is not single and is constituted by an angular distribution including the optical axis. Very slight changes of crystal orientation leads to crescent shape 1068-nm light distributions in the near-field. The beam launched towards the biaxial crystal is mainly linear polarized with its intensity in agreement with the Nd fluorescence angular distribution. A theoretical background is provided, including the monoclinic and triclinic symmetries and laser amplification including elliptical modes and cavity round trip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Voigt, On the behaviour of pleochroitic crystals along directions in the neighbourhood of an optic axis. Philos. Mag. Sci. 6(4), 90–97 (1902)

    Article  MATH  Google Scholar 

  2. S. Pancharatnam, On the pleochroism of amethyst quartz and its absorption spectra. Proc. Indian Acad. Sci. A 40 A, 196–210 (1954)

    Google Scholar 

  3. S. Pancharatnam, The propagation of light in absorbing biaxial crystals. Proc. Indian Acad. Sci. 42 A, 86–109 (1955)

    MATH  Google Scholar 

  4. A. Brenier, Polarization properties of lasing near an optical axis in the biaxial KGd(WO4)2:Nd crystal. Laser Phys. Lett. 11, 115819–115826 (2014)

    Article  ADS  Google Scholar 

  5. A. Brenier, Voigt wave investigation in the KGd(WO4)2:Nd biaxial laser crystal. J. Opt. 17, 075603 (2015)

    Article  ADS  Google Scholar 

  6. J. Gerardin, A. Lakhtakia, Conditions for Voigt wave propagation in linear, homogenous, dielectric medium’s. Optik 112, 493–495 (2001)

    Article  ADS  Google Scholar 

  7. T.G. Mackay, On the sensitivity of directions that support Voigt wave propagation in infiltrated biaxial dielectric materials. J. Nanophotonics 8, 083993 (2014)

    Article  ADS  Google Scholar 

  8. M. Born, E. Wolf, A.B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  9. L. Landau, E. Lifchitz, Electrodynamique des milieux continus (Ed. Mir, Moscou, 1969)

    Google Scholar 

  10. A.M. Belskii, A.P. Khapalyuk, Propagation of confined light beams along the beam axes of biaxial crystals. Opt. Spectrosc. (USSR) 44(3), 312–315 (1978)

    ADS  Google Scholar 

  11. A.M. Belskii, A.P. Khapalyuk, Internal conical refraction of bounded light beams in biaxial crystals. Opt. Spectrosc. (USSR) 44(4), 436–438 (1978)

    ADS  Google Scholar 

  12. A.M. Belskii, M.A. Stepanov, Internal conical refraction of coherent light beams. Opt. Commun. 167, 1–5 (1999)

    Article  ADS  Google Scholar 

  13. M.V. Berry, Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spikes. J. Opt. A: Pure Appl. Opt. 6, 289–300 (2004)

    Article  ADS  Google Scholar 

  14. M.V. Berry, M.R. Jeffrey, J.G. Lunney, Conical diffraction: observation and theory. Proc. R. Soc. A 462, 1629–1642 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Turpin, Y. Loiko, T. Kalkandjiev, J. Mompart, Free-space optical polarization demultiplexing and multiplexing by means of conical refraction. Opt. Lett. 37, 4197–4199 (2012)

    Article  ADS  Google Scholar 

  16. D.P. O’Dwyer, K.E. Ballantine, C.F. Phelan, J.G. Lunney, J.F. Donegan, Optical trapping using cascade conical refraction of light. Opt. Exp. 20, 21119–21121 (2012)

    Article  ADS  Google Scholar 

  17. S. Rosen, G.Y. Sirat, H. Ilan, A.J. Agranat, A sub wavelength localisation scheme in optical imaging using conical refraction. Opt. Exp. 21, 10133–10138 (2013)

    Article  ADS  Google Scholar 

  18. J. Caron, C. Fallet, J.-Y. Tinevez, L. Moisan, L.P. Braitbart, G.Y. Sirat, S.L. Shorte, Conical diffraction illumination opens the way for low phototoxicity super-resolution imaging. Cell Adhes. Migr. 8(5), 430–439 (2015)

    Article  Google Scholar 

  19. C.F. Phelan, R.J. Winfield, D.P. O’Dwyer, Y.P. Rakovich, J.F. Donegan, J.G. Lunney, Opt. Commun. 284, 3571–3574 (2011)

    Article  ADS  Google Scholar 

  20. A. Peinado, A. Turpin, A. Lizana, E. Fernández, J. Mompart, J. Campos, Conical refraction as a tool for polarization metrology. Opt. Lett. 38, 4100–4103 (2013)

    Article  ADS  Google Scholar 

  21. S.D. Grant, S. Reynolds, A. Abdolvand, Optical sensing of polarization using conical diffraction phenomenon. J. Opt. 18, 025609 (2016)

    Article  ADS  Google Scholar 

  22. V. Peet, Biaxial crystals as a versatile mode converter. J. Opt. 12, 5706 (2010)

    Article  Google Scholar 

  23. V. Peet, Improving directivity of laser beams by employing the effect of conical refraction in biaxial crystals. Opt. Exp. 18, 19566–19573 (2010)

    Article  ADS  Google Scholar 

  24. G.S. Sokolovskii, D.J. Carnegie, T.K. Kalkandjiev, E.U. Rafailov, Conical refraction: new observations and a dual cone model. Opt. Exp. 21, 11125–11131 (2013)

    Article  ADS  Google Scholar 

  25. A. Turpin, Y.V. Loiko, T.K. Kalkandjiev, H. Tomizawa, J. Mompart, Super-Gaussian conical refraction beams. Opt. Lett. 39, 4349–4352 (2014)

    Article  ADS  Google Scholar 

  26. S.D. Grant, A. Abdovland, Evolution of conically diffracted Gaussian beams in free space. Opt. Exp. 22, 2886–3880 (2014)

    Google Scholar 

  27. A. Turpin, Y. Loiko, A. Peinado, A. Lizana, T.K. Kalkandjiev, J. Campos, J. Mompart, Polarization tailored novel vector beams based on conical refraction. Opt. Exp. 23, 5704–5715 (2015)

    Article  ADS  Google Scholar 

  28. A. Turpin, Y. Loiko, T.K. Kalkandjiev, J. Mompart, Light propagation in biaxial crystals. J. Opt. 17, 065603 (2015)

    Article  ADS  Google Scholar 

  29. A. Turpin, Y. Loiko, T.K. Kalkandjiev, H. Tomizawa, J. Mompart, On the dual cone nature of the conical refraction phenomenon. Opt. Lett. 40, 1639–1642 (2015)

    Article  ADS  Google Scholar 

  30. J. Hellstrom, H. Henricsson, V. Pasiskevicius, U. Bunting, D. Haussmann, Polarization-tunable Yb:KGW laser based on internal conical refraction. Opt. Lett. 32, 2783–2785 (2007)

    Article  ADS  Google Scholar 

  31. K.G. Wilcox, A. Abdolvand, T.K. Kalkandjiev, E.U. Rafailov, Laser with simultaneous Gaussian and conical refraction outputs. Appl. Phys. B Lasers Opt. 99, 619–622 (2010)

    Article  ADS  Google Scholar 

  32. A. Abdolvand, K.G. Wilcox, T.K. Kalkandjiev, E.U. Rafailov, Conical refraction Nd:KGd(WO4)2 laser. Opt. Exp. 18, 2753–2759 (2010)

    Article  ADS  Google Scholar 

  33. Y.V. Loiko, G.S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, E. Rafailov, Laser beams with conical refraction patterns. Proc. SPIE 8960, 89601Q (2014)

    Article  ADS  Google Scholar 

  34. R. Cattoor, I. Manek-Hönninger, D. Rytz, L. Canioni, M. Eichhorn, Laser action along and near the optic axis of a holmium-doped KY(WO4)2 crystal. Opt. Lett. 39, 6407–6410 (2014)

    Article  ADS  Google Scholar 

  35. I.V. Mochalov, Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ (KGW:Nd). Opt. Eng. 36, 1660–1669 (1997)

    Article  ADS  Google Scholar 

  36. N.S. Ustimenko, A.V. Gulin, New self-frequency converted Nd3+:KGd(WO4)2 Raman lasers. Quantum Electron. 32, 229–231 (2002)

    Article  ADS  Google Scholar 

  37. Y. Chen, Y. Lin, X. Gong, Q. Tan, J. Zhuang, Z. Luo, Y. Huang, Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal. J. Lumin. 126, 653–660 (2007)

    Article  Google Scholar 

  38. Y. Petit, B. Boulanger, P. Segond, C. Félix, B. Ménaert, J. Zaccaro, G. Aka, Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB. Opt. Exp. 16(11), 7997–8002 (2008)

    Article  ADS  Google Scholar 

  39. A. Brenier, Y. Wu, J. Zhang, Y. Wu, P. Fu, Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19. Appl. Phys. B: Lasers Opt. 107, 59–65 (2012)

    Article  ADS  Google Scholar 

  40. R.M. Solé, M.C. Pujol, J. Massons, M. Aguiló, F. Díaz, A. Brenier, Growth, anisotropic spectroscopy and lasing of the monoclinic Nd:KGd(PO3)4 crystal. J. Phys. D Appl. Phys. 48, 495502–495512 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Brenier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenier, A. Lasing with conical diffraction feature in the KGd(WO4)2:Nd biaxial crystal. Appl. Phys. B 122, 237 (2016). https://doi.org/10.1007/s00340-016-6512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6512-y

Keywords

Navigation