Skip to main content
Log in

Ultraslow solitons due to large quintic nonlinearity in coupled quantum well structures driven by two control laser beams

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we have shown the existence of large amounts of quintic nonlinearity in asymmetric three-coupled quantum wells, which arise due to a probe pulse and two controlling laser beams. The possibilities of generation and propagation of ultraslow bright optical solitons in these systems have been examined in situations of both Kerr and quintic nonlinearities. We have also demonstrated numerically that these solitons are stable. The modulation instability of a continuous or quasi-continuous wave probe beam has been also investigated and the role of quintic nonlinearity in suppressing this instability has been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: Fibers to Photonic Crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  2. G.P. Agarwal, Nonlinear Fiber optics, 3rd edn. (Academic Press, New York, 2001)

    Google Scholar 

  3. A. Hasegawa, M. Matsumoto, Optical Solitons in Fibers (Springer, Berlin 2003)

  4. L.W. Dong, H. Wang, Appl. Phys. B 84, 465 (2006)

    Article  ADS  Google Scholar 

  5. C. Zhu, G. Huang, Phys. Rev. B 80, 235408 (2009)

    Google Scholar 

  6. X. Hao, J. Li, J. Liu, P. Song, X. Yang, Phys. Lett. A 372, 2509 (2008)

    Article  ADS  MATH  Google Scholar 

  7. W.X. Yang, J.M. Hou, R.K. Lee, Phys. Rev. A 77, 033838 (2008)

    Article  ADS  Google Scholar 

  8. X.Y. Hao, J.B. Liu, X.Y. Lu, P.J. Song, L.G. Si, Commun. Theor. Phys. 51, 519 (2009)

    Article  ADS  MATH  Google Scholar 

  9. W.X. Yang, J.-M. Hou, Y.Y. Lin, R.K. Lee et al., Phys. Rev. A 79, 033825 (2009)

    Article  ADS  Google Scholar 

  10. C. Liu, F. Capasso, Inter Subband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000)

    Google Scholar 

  11. C. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994)

    Article  ADS  Google Scholar 

  12. Y. Wu, X. Yang, Phys. Rev. B 76, 054425 (2007)

    Article  ADS  Google Scholar 

  13. Y. Wu, X. Yang, Phys. Rev. A 71, 053806 (2005)

    Article  ADS  Google Scholar 

  14. Y. Wu, X. Yang, Appl. Phys. Lett. 91, 094104 (2007)

    Article  ADS  Google Scholar 

  15. D. Han, Y. Zeng, Y. Bai, W. Chen, H. Cao, H. Lu, C. Huang, L. Chen, Appl. Phys. B 91, 359 (2008)

    Article  ADS  Google Scholar 

  16. S.E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  17. H. Kang, G. Hernandez, J. Zhang, Y. Zhu, Phys. Rev. A 73, 011802(R) (2006)

  18. C. Hang, G. Huang, Phys. Lett. A 372, 3129 (2008)

    Article  ADS  MATH  Google Scholar 

  19. Jianbing Qi, Phys. Scr. 81, 015402 (2010)

    Article  ADS  Google Scholar 

  20. R. Loudon, The Quantum Theory of Light, 3rd edn (Oxford University Press, New York, 2000)

  21. C.R. Lee, Y.C. Li, F.K. Men, C.H. Pao, Y.C. Tsai, J.F. Wang, Appl. Phys. Lett. 86, 201112 (2005)

    Article  ADS  Google Scholar 

  22. E. Paspalakis, M. Tsaousidou, A.F. Terzis, Phys. Rev. B 73, 125344 (2006)

    Article  ADS  Google Scholar 

  23. J.H. Li, Phys. Rev. B 75, 155329 (2007)

    Article  ADS  Google Scholar 

  24. J.H. Wu, J.Y. Gao, J.H. Xu, L. Silvestri, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. Lett. 95, 057401 (2005)

    Article  ADS  Google Scholar 

  25. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997)

    Book  Google Scholar 

  26. M.G. Payne, L. Deng, Phys. Rev. A 65, 063806 (2002)

    Article  ADS  Google Scholar 

  27. L. Deng, M.G. Payne, Phys. Rev. Lett. 98, 253902 (2007)

    Article  ADS  Google Scholar 

  28. C. Hang, G. Huang, Phys. Rev. A 77, 033830 (2008)

    Article  ADS  Google Scholar 

  29. J. Li, J. Liu, X. Yang, Superlattices Microstruct. 44, 166 (2008)

    Article  ADS  Google Scholar 

  30. W.X. Yang, T.T. Zha, R.K. Lee, Phys. Lett. A 374, 355 (2009)

    Article  ADS  Google Scholar 

  31. Y. Wu, L. Deng, Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  32. Y. Wu, L. Deng, Opt. Lett. 29, 2064 (2004)

    Article  ADS  Google Scholar 

  33. M. Karlsson, Phys. Rev. A 46, 2726 (1992)

    Article  ADS  Google Scholar 

  34. K. Lu, W. Zhao, Y. Yang, Y. Yang, M. Zhang, R.A. Rupp, M. Fally, Y. Zhang, J. Xu, Appl. Phys. B 87, 469 (2007)

    Article  ADS  Google Scholar 

  35. T. Kumar, Kurz, W. Lauterborn, Phys. Rev. E 53, 1166 (1996)

    Article  ADS  Google Scholar 

  36. S. Konar, A. Sengupta, J. Opt. Soc. Am. B 11, 1644 (1994)

    Article  ADS  Google Scholar 

  37. D. Anderson, Phys. Rev. A 27, 3135 (1983)

    Article  ADS  Google Scholar 

  38. De Angelis, IEEE J. Quant. Electron. 30, 818 (1994)

    Article  ADS  Google Scholar 

  39. Sirtori, F. Capasso, D.L. Sivco, A.Y. Cho et al., Phys. Rev. Lett. 68, 1010 (1992)

    Article  ADS  Google Scholar 

  40. S. Cowan, R.H. Enns, S.S. Rangnekar, S.S. Sanghera, Can. J. Phys. 64, 311 (1986)

    Article  ADS  Google Scholar 

  41. S.L. Eix, R.H. Enns, S.S. Rangnekar, Phys. Rev. A 49, 3037 (1994)

    Article  ADS  Google Scholar 

  42. X. Zhou, T. He, Shigang Chen et al., Phys. Rev. A 46, 2277 (1992)

    Article  ADS  Google Scholar 

  43. V. Buryak, N.N. Akhmediev, Phys. Rev. E 50, 3126 (1994)

    Article  ADS  Google Scholar 

  44. Artigas, L. Torner, J.P. Torres, N. Akhmediev et al., Opt. Commun. 143, 322 (1997)

    Article  ADS  Google Scholar 

  45. K. Sarma, P. Kumar, Appl. Phys B 106, 289 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank anonymous referees for insightful comments and valuable suggestions. This work is supported by the University Grants Commission, Bahadur Shah Zafar Marg, New Delhi-110001, India, through a post doctoral fellowship [Letter No. F.30-1/2009(SA-II)] and the support is acknowledged with thanks by S. Shwetanshumala. The authors would like to thank Prof. Ajoy Chakraborty, Vice Chancellor, Birla Institute of Technology, for encouragement and moral support. S. Konar would like to thank Prof. M.S. Sodha for his teaching and guidance in nonlinear optics to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Konar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shwetanshumala, S., Konar, S. & Biswas, A. Ultraslow solitons due to large quintic nonlinearity in coupled quantum well structures driven by two control laser beams. Appl. Phys. B 111, 53–64 (2013). https://doi.org/10.1007/s00340-012-5306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5306-0

Keywords

Navigation