Skip to main content
Log in

Wigner distribution function of Lorentz–Gauss beams: a note

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Stimulated by a recent investigation of the Wigner distribution function of a Lorentz–Gauss beam, we present closed-form expression for such a function at the initial plane, which is alternative to that deduced in the aforementioned investigation. Such an expression can be usefully exploited to fully account for the Wigner-plane dynamics of Lorentz–Gauss beams as far as the paraxial propagation is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. El Gawhary, S. Severini, Lorentz beams and symmetry properties in paraxial optics. J. Opt. A. Pure Appl. Opt 8, 409–414 (2006)

    Article  ADS  Google Scholar 

  2. A.P. Kiselev, New structure in paraxial Gaussian beams. Opt. Spectr 96, 479–481 (2004)

    Article  ADS  Google Scholar 

  3. J.C. Gutierrez-Vega, M.A. Bandres, Helmholtz–Gauss waves. JOSA A 22, 289–298 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. W.P. Dumke, The angular beam divergence in double-heterojunction lasers with very thin active regions. IEEE J Quantum Electron 11, 400–402 (1975)

    Article  ADS  Google Scholar 

  5. A. Naqwi, F. Durst, Focusing of diode laser beams: a simple mathematical model. Appl. Opt 29, 1780–1785 (1990)

    Article  ADS  Google Scholar 

  6. J. Yang, T. Chen, G. Ding, X. Yuan, Focusing of diode laser beams: a partially coherent Lorentz model. Proc. SPIE 6824, 68240A (2007), http://dx.doi.org/10.1117/12.757962

  7. G. Zhou, Fractional Fourier transform of Lorentz–Gauss beams. JOSA A 26, 350–355 (2009)

    Article  ADS  Google Scholar 

  8. G. Zhou, Beam propagation factors of a Lorentz–Gauss beam. Appl. Phys. B 96, 149–153 (2009)

    Article  ADS  Google Scholar 

  9. G. Zhou, Propagation of a Lorentz–Gauss beam through a misaligned optical system. Opt. Commun 283, 1236–1243 (2010)

    Article  ADS  Google Scholar 

  10. G. Zhou, Propagation of the kurtosis parameter of a Lorentz–Gauss beam through a paraxial and real ABCD optical system. J. Opt. 13, 035705 (2011)

    Google Scholar 

  11. G. Zhou, R. Chen, Wigner distribution function of Lorentz and Lorentz–Gauss beams through a paraxial ABCD optical system. Appl. Phys. B 107, 183–193 (2012)

    Article  ADS  Google Scholar 

  12. P.P. Schmidt, A method for the convolution of lineshapes which involve the Lorentz distribution. J. Phys. B 9, 2331–2339 (1976)

    Article  ADS  Google Scholar 

  13. W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, Berlin, 1966)

  14. E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  Google Scholar 

  15. M.J. Bastiaans, Wigner distribution function applied to optical signals and systems. Opt. Comm. 25, 26–30 (1978)

    Article  ADS  Google Scholar 

  16. D. Dragoman, in Progress in Optics, ed. by E. Wolf. The Wigner distribution function in Optics and Optoelectronics, vol XXXVII (Elsevier, Amsterdam, 1997), ch. 1, pp.1–56

  17. A. Torre, Linear Ray and Wave Optics in Phase Space. (Elsevier, Amsterdam, 2005)

  18. M. Testorf, J. Ojeda-Castañeda, A.W. Lohmann, Selected papers on Phase–Space Optics. (SPIE Milestone Series, Bellingham, 2006)

  19. M. Testorf, B. Hennelly and J. Ojeda-Castañeda, Phase-Space Optics: Fundamentals and Applications. (McGraw Hill, New York, 2010)

  20. M.A. Alonso, Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photon 3, 272–365 (2011)

    Article  Google Scholar 

  21. S.A. Collins Jr., Lens-system diffraction integral written in terms of matrix optics. JOSA 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  22. A. E. Siegman, Lasers. (University Science Books, 1986)

  23. D.V. Widder, The Heat Equation. (Academic Press, London, 1975)

  24. E.G. Kalnins and W. Miller Jr., Lie theory and separation of variables. 5. The equation iU t  + U xx  = 0 and iU t  + U xx  − c/x 2 U = 0. J. Math. Phys. 15, 1728–1737 (1974)

  25. A. Torre, Linear and quadratic exponential modulation of the solutions of the paraxial wave equation. J. Opt. 12, 035701, (2010)

    Google Scholar 

  26. L. Cohen, Generalized phase space distribution functions. J. Math Phys. 7, 781–786 (1966)

    Google Scholar 

  27. L. Cohen, Time–Frequency Analysis (Prentice-Hall, Englewood Cliffs, 1995)

  28. F. Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic time–frequency signal representations, IEEE Signal Process. Mag. 21–27 (1992)

  29. A. Papoulis, The ambiguity function in optics. JOSA 64, 779–788 (1974)

    Article  ADS  Google Scholar 

  30. K.-H. Brenner, A.W. Lohmann and J. Ojeda-Castañeda, The ambiguity function as polar display of the OTF. Opt. Commun. 44, 323–326 (1983)

    Google Scholar 

  31. C.J.R. Sheppard, K.G. Larkin, The three-dimensional transfer function and phase space mappings. Optik 112, 189–192 (2001)

    Google Scholar 

  32. O. El Gawhary, S. Severini, Lorentz beams as a basis for a new class of rectangularly symmetric optical fields. Opt. Commun. 269, 274–284 (2007)

    Article  ADS  Google Scholar 

  33. A. Torre, W.A.B. Evans, O. El Gawhary, S. Severini, Relativistic Hermite polynomials and Lorentz beams. J. Opt. A: Pure Appl. Opt. 10, 115007 (2008)

    Google Scholar 

  34. G. Zhou, Super Lorentz–Gauss modes and their paraxial propagation properties. JOSA A 27, 563–571 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torre, A. Wigner distribution function of Lorentz–Gauss beams: a note. Appl. Phys. B 109, 671–681 (2012). https://doi.org/10.1007/s00340-012-5236-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5236-x

Keywords

Navigation