Skip to main content
Log in

Near-field optical power transmission of dipole nano-antennas

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nano-antennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nano-antenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90, 095503 (2003)

    Article  ADS  Google Scholar 

  2. K. Sendur, W. Challener, C. Peng, J. Appl. Phys. 96, 2743–2752 (2004)

    Article  ADS  Google Scholar 

  3. L. Wang, X. Xu, J. Microsc. 229, 483–489 (2008)

    Article  MathSciNet  Google Scholar 

  4. B. Liedberg, C. Nylander, I. Lundstroem, Sens. Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  5. R.D. Grober, R.J. Schoelkopf, D.E. Prober, Appl. Phys. Lett. 70, 1354–1356 (1997)

    Article  ADS  Google Scholar 

  6. K. Sendur, W. Challener, J. Microsc. 210, 279–283 (2003)

    Article  MathSciNet  Google Scholar 

  7. E.X. Jin, X. Xu, J. Comput. Theor. Nanosci. 5, 214–218 (2008)

    Google Scholar 

  8. S. Wang, Appl. Phys. Lett. 28, 303 (1976)

    Article  ADS  Google Scholar 

  9. V. Daneu, D. Sokoloff, A. Sanchez, A. Javan, Appl. Phys. Lett. 15, 398 (1969)

    Article  ADS  Google Scholar 

  10. A. Sanchez, C.F. Davis Jr., K.C. Liu, A. Javan, J. Appl. Phys. 49, 5270 (1978)

    Article  ADS  Google Scholar 

  11. K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, J. Appl. Phys. 94, 4632 (2003)

    Article  ADS  Google Scholar 

  12. D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Nano Lett. 4, 957 (2004)

    Article  ADS  Google Scholar 

  13. P. Muhlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607–1609 (2005)

    Article  ADS  Google Scholar 

  14. F. Jackel, A.A. Kinkhabwala, W.E. Moerner, Chem. Phys. Lett. 446, 339–343 (2007)

    Article  ADS  Google Scholar 

  15. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007)

    Article  ADS  Google Scholar 

  16. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)

    Google Scholar 

  17. J.J. Burke, G.I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186–5201 (1986)

    Article  ADS  Google Scholar 

  18. H. Raether, Physics of Thin Films (Academic Press, New York, 1977), pp. 145–261

    Google Scholar 

  19. T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, J. Appl. Phys. 95, 3901–3906 (2004)

    Article  ADS  Google Scholar 

  20. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, T. Nishida, Opt. Lett. 31, 259–261 (2006)

    Article  ADS  Google Scholar 

  21. A. Itagi, D. Stancil, J. Bain, T. Schlesinger, Appl. Phys. Lett. 83, 4474 (2003)

    Article  ADS  Google Scholar 

  22. K. Sendur, C. Peng, W. Challener, Phys. Rev. Lett. 94, 043901 (2005)

    Article  ADS  Google Scholar 

  23. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006), Chap. 3

    Google Scholar 

  24. E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 349–357 (1959)

    Article  MATH  ADS  Google Scholar 

  25. B. Richards, E. Wolf, Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959)

    Article  MATH  ADS  Google Scholar 

  26. J.M. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2000)

    Google Scholar 

  27. R.M. Stöckle, N. Schaller, V. Deckert, C. Fokas, R. Zenobi, Opt. Lett. 20, 970 (1995)

    Article  Google Scholar 

  28. K. Sendur, W. Challener, O. Mryasov, Opt. Express 16, 2874–2886 (2008)

    Article  ADS  Google Scholar 

  29. K.S. Youngworth, T.G. Brown, Opt. Express 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  30. D.K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, New York, 1983)

    Google Scholar 

  31. C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989)

    Google Scholar 

  32. I. Ichimura, S. Hayashi, G.S. Kino, Appl. Opt. 36, 4339–4348 (1997)

    Article  ADS  Google Scholar 

  33. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  34. J.P. Kottmann, O.J.F. Martin, Appl. Phys. B 73, 299–304 (2001)

    Article  ADS  Google Scholar 

  35. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Şendur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şendur, K., Baran, E. Near-field optical power transmission of dipole nano-antennas. Appl. Phys. B 96, 325–335 (2009). https://doi.org/10.1007/s00340-009-3505-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3505-0

PACS

Navigation