Skip to main content
Log in

Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on monitoring of nitric oxide (NO) traces in human breath via infrared cavity leak-out spectroscopy. Using a CO sideband laser near 5 μm wavelength and an optical cavity with two high-reflectivity mirrors (R=99.98%), the minimum detectable absorption is 2×10−10 cm−1 Hz1/2. This allows for spectroscopic analysis of rare NO isotopologues with unprecedented sensitivity. Application to simultaneous online detection of 14NO and 15NO in breath samples collected in the nasal cavity is described for the first time. We achieved a noise-equivalent detection limit of 7 parts per trillion for nasal 15NO (integration time: 70 s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.E. Gustafsson, A.M. Leone, M.G. Persson, N.P. Wiklund, S. Moncada, Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem. Biophys. Res. Commun. 181, 852–857 (1991)

    Article  Google Scholar 

  2. M. Imada, J. Iwamoto, S. Nonaka, Y. Kobayashi, T. Unno, Measurement of nitric oxide in human nasal airway. Eur. Respir. J. 9, 556–559 (1996)

    Article  Google Scholar 

  3. D.W. Allan, N. Ashby, C.C. Hodge, The science of timekeeping. Hewlett Packard Appl. Note 1289, 56–71 (1997)

    Google Scholar 

  4. P.G. Djupesland, J.M. Chatkin, W. Qian, P. Cole, N. Zamel, P. Mcclean, H. Furlott, J.S.J. Haight, Aerodynamics influences on nasal nitric oxide output measurements. Acta Oto-Laryngol. 119, 479–485 (1999)

    Article  Google Scholar 

  5. S.A. Kharitonov, P.J. Barnes, Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163, 1693–1722 (2001)

    Google Scholar 

  6. A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Cavity ring down spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. Appl. Opt. 40, 5522–5529 (2001)

    Article  ADS  Google Scholar 

  7. L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, W. Urban, Spectroscopic detection of biological NO with a quantum cascade laser. Appl. Phys. B 72, 859–863 (2001)

    ADS  Google Scholar 

  8. C. Roller, K. Namjou, J.D. Jeffers, M. Camp, A. Mock, P.J. McCann, J. Grego, Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation. Appl. Opt. 41, 6018–6029 (2002)

    Article  ADS  Google Scholar 

  9. D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl. Phys. B 75, 343–350 (2002)

    Article  ADS  Google Scholar 

  10. W.H. Weber, T.J. Remillard, R.E. Chase, J.F. Richert, F. Capasso, C. Gmachl, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Using a wavelength-modulation quantum cascade laser to measure NO concentration in the parts-per-billion range for vehicle emissions certification. Appl. Spectrosc. 56, 706–714 (2002)

    Article  ADS  Google Scholar 

  11. Y.C. Luiking, N.E. Deutz, Isotopic investigation of nitric oxide metabolism in disease. Curr. Opin. Clin. Nutr. Metab. Care 6, 103–108 (2003)

    Article  Google Scholar 

  12. D. Halmer, G. von Basum, P. Hering, M. Mürtz, Fast exponential fitting algorithm for real-time instrumental use. Rev. Sci. Instrum. 75, 2187–2191 (2004)

    Article  ADS  Google Scholar 

  13. M.L. Silva, D.M. Sonnenfroh, D.I. Rosen, M.G. Allen, A. O’ Keefe, Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL. Appl. Phys. B 81, 705–710 (2005)

    Article  ADS  Google Scholar 

  14. D. Halmer, G.V. Basum, M. Horstjann, P. Hering, M. Mürtz, Time resolved simultaneous detection of 14NO and 15NO via mid-infrared cavity leak-out spectroscopy. Isot. Environ. Health Stud. 41, 303–311 (2005)

    Article  Google Scholar 

  15. L.S. Rothman, D. Jacquemart, D.C. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005)

    Article  ADS  Google Scholar 

  16. American Thoracic Society (ATS), the European Respiratory Society (ERS), ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 171, 912–930 (2005)

    Article  Google Scholar 

  17. M. Mürtz, D. Halmer, M. Horstjann, S. Thelen, P. Hering, Ultra sensitive trace gas detection for biomedical applications. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 63, 963–969 (2006)

    Article  Google Scholar 

  18. B.W.M. Moeskops, S.M. Cristescu, F.J.M. Harren, Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser. Opt. Lett. 31, 823–825 (2006)

    Article  ADS  Google Scholar 

  19. Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy. Appl. Phys. B 82, 149–154 (2006)

    Article  ADS  Google Scholar 

  20. M.R. McCurdy, Y.A. Bakhirkin, F.K. Tittel, Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide. Appl. Phys. B 85, 445–452 (2006)

    Article  ADS  Google Scholar 

  21. J. Yi, K. Namjou, Z.N. Zahran, P.J. McCann, G.B. Richter-Addo, Specific detection of gaseous NO and 15NO in the headspace from liquid-phase reactions involving NO-generating organic, inorganic, and biochemical samples using a mid-infrared laser. Nitric Oxide 15, 154–162 (2006)

    Article  Google Scholar 

  22. C. Mitscherling, J. Lauenstein, C. Maul, A.A. Veselov, O.S. Vasyutinskii, K.H. Gericke, Non-invasive and isotope-selective laser-induced fluorescence spectroscopy of nitric oxide in exhaled air. J. Breath Res. 1, 026003 (2007)

    Article  ADS  Google Scholar 

  23. M.R. McCurdy, Y. Bakhirkin, G. Wysocki, F.K. Tittel, Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy. J. Biomed. Optics 12, 034034 (2007)

    Article  ADS  Google Scholar 

  24. T. Fritsch, P. Brouzos, K. Heinrich, M. Kelm, T. Rassaf, P. Hering, P. Kleinbongard, M. Mürtz, NO detection in biological samples: differentiation of 14NO and 15NO using infrared laser spectroscopy. Nitric Oxide 19, 50–56 (2008)

    Article  Google Scholar 

  25. T. Fritsch, M. van Herpen, G. von Basum, P. Hering, M. Mürtz, Is exhaled carbon monoxide level associated with blood glucose level? A comparison of two breath analyzing methods. J. Biomed. Opt. 13, 034012 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mürtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, K., Fritsch, T., Hering, P. et al. Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath. Appl. Phys. B 95, 281–286 (2009). https://doi.org/10.1007/s00340-009-3423-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3423-1

PACS

Navigation